
Web
CS 161

Computer Security Textbook

An online version is available at https://textbook.cs161.org.

Textbook by David Wagner, Nicholas Weaver, Peyrin Kao,
Fuzail Shakir, Andrew Law, and Nicholas Ngai

Additional contributions by Noura Alomar, Sheqi Zhang, and Shomil Jain

Last update: August 23, 2021

Contact for corrections: cs161-staff@berkeley.edu

It would not be too much of a stretch to say that much of today’s world is built upon the
Internet. Many of the services that run on top of the Internet come with their own class
of vulnerabilities and defenses to match. In particular, we will be focusing on web security,
which covers a class of attacks that target web pages and web services.

17 SQL Injection
17.1 Code Injection
SQL injection is a special case of a more broad category of attacks called code injections.

As an example, consider a calculator website that accepts user input and calls eval in Python
in the server backend to perform the calculation. For example, if a user types 2+3 into the
website, the server will run eval("2+3") and return the result to the user.

If the web server is not careful about checking user input, an attacker could provide a
malicious input like

2+3"); os.system("rm -rf /

When the web server plugs this into the eval Python function, the result looks like

eval("2+3"); os.system("rm -rf /")

If interpreted as code, this statement causes the web server to delete all its files!

The general idea behind these attacks is that a web server uses user input as part of the
code it runs. If the input is not properly checked, an attacker could create a special input
that causes unintended code to run on the server.

CS 161 Notes 1 of 23

https://textbook.cs161.org
https://people.eecs.berkeley.edu/~daw/
https://www1.icsi.berkeley.edu/~nweaver
https://peyrin.github.io
https://ngai.me
https://shomil.me

17.2 SQL Injection Example
Many modern web servers use SQL databases to store information such as user logins or
uploaded files. These servers often allow users to interact with the database through HTTP
requests.

For example, consider a website that stores a SQL table of course evaluations named evals:

id course rating

1 cs61a 4.5
2 cs61b 4.4
3 cs161 5.0

A user can make an HTTP GET request for a course rating through a URL:

http://www.berkeley.edu/evals?course=cs61a

To process this request, the server performs a SQL query to look up the rating corresponding
to the course the user requested:

SELECT rating FROM evals WHERE course = ’cs61a’

Just like the code injection example, if the server does not properly check user input, an
attacker could create a special input that allows arbitrary SQL code to be run. Consider the
following malicious input:

garbage’; SELECT password FROM passwords WHERE username = ’admin

When the web server plugs this into the SQL query, the resulting query looks like

SELECT rating FROM evals WHERE course = ’garbage’;

SELECT password FROM passwords WHERE username = ’admin’

If interpreted as code, this causes the query to return the password for the admin user!

17.3 SQL Injection Strategies
Writing a malicious input that creates a syntactically valid SQL query can be tricky. Let’s
break down each part of the malicious input from the previous example:

• garbage is a garbage input to the intended query so that it doesn’t return anything.

• ’ closes the opening quote from the intended query. Without this closing quote, the
rest of our query would be treated as a string, not SQL code.

• ; ends the intended SQL query and lets us start a new SQL query.

• SELECT password FROM passwords WHERE username = ’admin is the malicious SQL
query we want to execute. Note that we didn’t add a closing quote to ’admin, because
the intended SQL query will automatically add a closing quote at the end of our input.

CS 161 Notes 2 of 23

Consider another vulnerable SQL query. This time, we have a users table that contains the
username and password of every user.

When the web server receives a login request, it creates a SQL query by plugging in the
username and password from the request. For example, if you make a login request with
username alice and password password123, the resulting SQL query would be

SELECT username FROM users WHERE username = ’alice’

AND password = ’password123’

If the query returns more than 0 rows, the server registers a successful login.

Suppose we want to login to the server, but we don’t have an account, and we don’t know
anyone’s username. How might we achieve this using SQL injection?

First, in the username field, we should add a dummy username and a quote to end the
opening quote from the original query:

SELECT username FROM users WHERE username = ’alice’

’ AND password = ’ ’

Next, we need to add some SQL syntax so that this query returns more than 0 rows (since
we don’t know if alice is a valid username). One trick for forcing a SQL query to always
return something is to add some logic that always evaluates to true, such as OR 1=1:

SELECT username FROM users WHERE username = ’alice’ OR 1=1

’ AND password = ’ ’

Next, we have to add some SQL so that the rest of the query doesn’t throw a syntax error.
One way of doing this is to add a semicolon (ending the previous query) and write a dummy
query that matches the remaining SQL:

SELECT username FROM users WHERE username = ’alice’ OR 1=1;

SELECT username FROM users WHERE username = ’alice’ AND password = ’ ’

The second query might not return anything, but the first query will return a nonzero
number of entries, which lets us perform a login. The last step is to add some garbage as
the password:

SELECT username FROM users WHERE username = ’alice’ OR 1=1;

SELECT username FROM users WHERE username = ’alice’ AND password = ’garbage’

Thus, our malicious username and password should be

username = alice’ OR 1=1; SELECT username FROM users WHERE username = ’alice

password = garbage

Another trick to make SQL injection easier is the -- syntax, which starts a comment in SQL.
This tells SQL to ignore the rest of the query as a comment.

In our previous example, we can instead start a comment to ignore parts of the query we
don’t want to execute:

CS 161 Notes 3 of 23

SELECT username FROM users WHERE username = ’alice’ OR 1=1

--’ AND password = ’garbage’

Thus, another malicious username and password is

username = alice’ OR 1=1--

password = garbage

Further reading: SQL Injection Attacks by Example

17.4 Defense: Escape Inputs
One way of defending against SQL injection is to escape any potential input that could be
used in an attack. Escaping a character means that you tell SQL to treat this character as
part of the string, not actual SQL syntax.

For example, the quote ’ is used to denote the end of a string in SQL. However, the escaped
quote \’ is treated as a literal quote character in SQL, and it does not cause the current
string to end.

By properly replacing characters with their escaped version, malicious inputs such as the
ones we’ve been creating will be treated as strings, and the SQL parser won’t try to run
them as actual SQL commands.

For example, in the previous exploit, if the server replaces all instances of the quote ’ and
the dash - with escaped versions, the SQL parser will see

SELECT username FROM users WHERE username = ’alice\’ OR 1=1\-\-’
AND password = ’garbage’

The escaped quote won’t cause the username string to end, and the escaped dashes won’t
cause a comment to be created. The parser will try to look up someone with a username
alice’ OR 1=1-- and find nothing.

However, we have to be careful with escaping. If an attacker inputs a backslash followed by
a quote \’, the escaper might “escape the escape” and give the input \\’ to the SQL parser.
The parser will treat the two backslashes \\ as an escaped backslash, and the quote won’t
be escaped!

The key takeaway here is that building a good escaper can be tricky, and there are many
edge cases to consider. There is almost no circumstance in which you should try to build an
escaper yourself; secure SQL escapers exist in SQL libraries for almost every programming
language. However, if you are running SQL statements with raw user input, escapers are
often an ineffective solution, because you need to ensure that every call is properly escaped.
A far more robust solution is to use parameterized SQL.

17.5 Defense: Parameterized SQL/Prepared Statements
A better defense against SQL injection is to use parameterized SQL or prepared statements.
This type of SQL compiles the query first, and then plugs in user input after the query has

CS 161 Notes 4 of 23

http://www.unixwiz.net/techtips/sql-injection.html

already been interpreted by the SQL parser. Because the user input is added after the query
is compiled and interpreted, there is no way for any attacker input to be treated as SQL
code. Parameterized SQL prevents all SQL injection attacks, so it is the best defense against
SQL injection!

In most SQL libraries, parameterized SQL and unsafe, non-paramaterized SQL are provided
as two different API functions. You can ensure that you’ve eliminated all potential SQL
vulnerabilities in your code by searching for every database query and replacing each API
call with a call to the parameterized SQL API function.

The biggest problem with parameterized SQL is compatibility. SQL is a (mostly) generic
language, so SQL written for MySQL can run on Postgres or commercial databases. Pa-
rameterized SQL requires support from the underlying database (since the processing itself
happens on the database side), and there is no common standard for expressing parameter-
ized SQL. Most SQL libraries will handle the translation for you, but switching to prepared
statements may make it harder to switch between databases.

In practice, most modern SQL libraries support parameterized SQL and prepared statements.
If the library you are using does not support parameterized SQL, it is probably best to switch
to a different SQL library.

Further reading: OWASP Cheat Sheet on SQL Injection

CS 161 Notes 5 of 23

https://owasp.org/www-community/attacks/SQL_Injection

18 Introduction to the Web
18.1 URLs
Every resource (webpage, image, PDF, etc.) on the web is identified by a URL (Uniform Re-
source Locator). URLs are designed to describe exactly where to find a piece of information
on the Internet. A basic URL consists of three mandatory parts:

http://www.example.com/index.html

The first mandatory part is the protocol, located before :// in the URL. In the example
above, the protocol is http. The protocol tells your browser how to retrieve the resource. In
this class, the only two protocols you need to know are HTTP, which we will cover in the next
section, and HTTPS, which is a secure version of HTTP using TLS (refer to the networking
unit for more details). Other protocols include git+ssh://, which fetches a git archive over
an encrypted tunnel using ssh, or ftp://, which uses the old FTP (File Transfer Protocol)
to fetch data.

The second mandatory part is the location, located after :// but before the next forward
slash in the URL. In the example above, the location is www.example.com. This tells your
browser which web server to contact to retrieve the resource.

Optionally, the location may contain an optional username, which is followed by an @ char-
acter if present. For example, evanbot@www.example.com is a location with a username
evanbot. All locations must include a computer identifier. This is usually a domain name
such as www.example.com. Sometimes the location will also include a port number, such
as www.example.com:81, to distinguish between different applications running on the same
web server. We will discuss ports a bit more when we talk about TCP during the networking
section.

The third mandatory part is the path, located after the first single forward slash in the URL.
In the example above, the path is /index.html. The path tells your browser which resource
on the web server to request. The web server uses the path to determine which page or
resource should be returned to you.

One way to think about paths is to imagine a filesystem on the web server you’re contacting.
The web server can use the path as a filepath to locate a specific page or resource. The path
must at least consist of /, which is known as the “root”1 of the filesystem for the remote
web site.

Optionally, there can be a ? character after the path. This indicates that you are supplying
additional arguments in the URL for the web server to process. After the ? character,
you can supply an optional set of parameters separated by & characters. Each parameter is
usually encoded as a key-value pair in the format key=value. Your browser sends all this
information to the web server when fetching a URL. See the next section for more details
on URL parameters.

1It is called the root because the filesystem can be treated as a tree and this is where the tree starts.

CS 161 Notes 6 of 23

Finally, there can be an optional anchor after the arguments, which starts with a # character.
The anchor text is not sent to the server, but is available to the web page as it runs in the
browser.

The anchor is often used to tell your browser to scroll to a certain part of the webpage when
loading it. For example, try loading https://en.wikipedia.org/wiki/Dwinelle Hall#Floor plan
and https://en.wikipedia.org/wiki/Dwinelle Hall#Construction and note that your browser
skips to the section of the article specified in the anchor.

In summary, a URL with all elements present may look like this:

http://evanbot@www.cs161.org:161/whoami?k1=v1&k2=v2#anchor

where http is the protocol, evanbot is the username, www.cs161.org is the computer loca-
tion (domain), 161 is the port, /whoami is the path, k1=v1&k2=v2 are the URL arguments,
and anchor is the anchor.

Further reading: What is a URL?

18.2 HTTP
The protocol that powers the World Wide Web is the Hypertext Transfer Protocol, abbre-
viated as HTTP. It is the language that clients use to communicate with servers in order to
fetch resources and issue other requests. While we will not be able to provide you with a
full overview of HTTP, this section is meant to get you familiar with several aspects of the
protocol that are important to understanding web security.

18.3 HTTP: The Request-Response Model
Fundamentally, HTTP follows a request-response model, where clients (such as browsers)
must actively start a connection to the server and issue a request, which the server then
responds to. This request can be something like “Send me a webpage” or “Change the
password for my user account to foobar.” In the first example, the server might respond with
the contents of the web page, and in the second example, the response might be something
as simple as “Okay, I’ve changed your password.” The exact structure of these requests will
be covered in further detail in the next couple sections.

The original version of HTTP, HTTP 1.1, is a text-based protocol, where each HTTP request
and response contains a header with some metadata about the request or response and a
payload with the actual contents of the request or response. HTTP2, a more recent version
of HTTP, is a binary-encoded protocol for efficiency, but the same concepts apply.

For all requests, the server generates and sends a response. The response includes a series
of headers and, in the payload, the body of the data requested.

18.4 HTTP: Structure of a Request
Below is a very simple HTTP request.

CS 161 Notes 7 of 23

https://en.wikipedia.org/wiki/Dwinelle_Hall#Floor_plan
https://en.wikipedia.org/wiki/Dwinelle_Hall#Construction
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_URL

GET / HTTP/1.1

Host: squigler.com

Dnt: 1

The first line of the request contains the method of the request (GET), the path of the request
(/), and the protocol version (HTTP/1.1). This is an example of a GET request. Each line
after the first line is a request header. In this example, there are two headers, the DNT
header and the Host header. There are many HTTP headers defined in the HTTP spec
which are used to convey various pieces of information, but we will only be covering a couple
of them through this lab.

Here is another HTTP request:

POST /login HTTP/1.1

Host: squigler.com

Content-Length: 40

Content-Type: application/x-url-formencoded

Dnt: 1

username=alice@foo.com&password=12345678

Here, we have a couple more headers and a different request type: the POST request.

18.5 HTTP: GET vs. POST
While there are quite a few methods for requests, the two types that we will focus on for this
course are GET requests and POST requests. GET requests are are generally intended for
“getting” information from the server. POST requests are intended for sending information
to the server that somehow modifies its internal state, such as adding a comment in a forum
or changing your password.

In the original HTTP model, GET requests are not supposed to change any server state.
However, modern web applications often change server state in response to GET requests in
query parameters.

Of note, only POST requests can contain a body in addition to request headers. Notice that
the body of the second example request contains the username and password that the user
alice is using to log in. While GET requests cannot have a body, it can still pass query
parameters via the URL itself. Such a request might look something like this:

GET /posts?search=security&sortby=popularity

Host: squigler.com

Dnt: 1

In this case, there are two query parameters, search and sortby, which have values of
security and popularity, respectively.

CS 161 Notes 8 of 23

18.6 Elements of a Webpage
The HTTP protocol is designed to return arbitrary files. The response header usually spec-
ifies a media type that tells the browser how to interpret the data in the response body.

Although the web can be used to return files of any type, much of the web is built in three
languages that provide functionality useful in web applications.

A modern web page can be thought of as a distributed application: there is a component
running on the web server and a component running in the web browser. First, the browser
makes an HTTP request to a web server. The web server performs some server-side com-
putation and generates and sends an HTTP response. Then, the browser performs some
browser-side computation on the HTTP response and displays the result to the user.

18.7 Elements of a Webpage: HTML
HTML (Hypertext Markup Language) lets us create structured documents with paragraphs,
links, fillable forms, and embedded images, among other features. You are not expected to
know HTML syntax for this course, but some basics are useful for some of the attacks we
will cover.

Here are some examples of what HTML can do:

• Create a link to Google: Click me

• Embed a picture in the webpage:

• Include JavaScript in the webpage: <script>alert(1)</script>

• Embed the CS161 webpage in the webpage: <iframe src="http://cs161.org"></iframe>

Frames pose a security risk, since the outer page is now including an inner page that may be
from a different, possibly malicious source. To protect against this, modern browsers enforce
frame isolation, which means the outer page cannot change the contents of the inner page,
and the inner page cannot change the contents of the outer page.

18.8 Elements of a Webpage: CSS
CSS (Cascading Style Sheets) lets us modify the appearance of an HTML page by using
different fonts, colors, and spacing, among other features. You are not expected to know
CSS syntax for this course, but you should know that CSS is as powerful as JavaScript
when used maliciously. If an attacker can force a victim to load some malicious CSS, this is
functionally equivalent to the attacker forcing the victim to load malicious JavaScript.

18.9 Elements of a Webpage: JavaScript
JavaScript is a programming language that runs in your browser. It is a very powerful
language–in general, you can assume JavaScript can arbitrarily modify any HTML or CSS

CS 161 Notes 9 of 23

https://en.wikipedia.org/wiki/Media_type

on a webpage. Webpages can include JavaScript in their HTML to allow for dynamic features
such as interactive buttons. Almost all modern webpages use JavaScript.

When a browser receives an HTML document, it first converts the HTML into an internal
form called the DOM (Document Object Model). The JavaScript is then applied on the
DOM to modify how the page is displayed to the user. The browser then renders the DOM
to display the result to the user.

Because JavaScript is so powerful, modern web browsers run JavaScript in a sandbox so that
any JavaScript code loaded from a webpage cannot access sensitive data on your computer
or even data on other webpages.

Most exploits targeting the web browser itself require JavaScript, either because the vulner-
ability lies in the browser’s JavaScript engine, or because JavaScript is used to shape the
memory layout of the program for improving the success rate of an attack.

Almost all web browsers implement JavaScript as a Just In Time compiler, dynamically
converting JavaScript into machine code2. Many modern desktop applications (notably
Slack’s desktop client) are actually written in the Electron framework, which is effectively a
cut down web browser running JavaScript.

2Trivia: Running JavaScript fast is considered so important that ARM recently introduced a dedicated
instruction, FJCVTZS (Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero),
specifically to handle how JavaScript’s math operates.

CS 161 Notes 10 of 23

19 Same-Origin Policy
Browsing multiple webpages poses a security risk. For example, if you have a malicious
website (www.evil.com) and Gmail (www.gmail.com) open, you don’t want the malicious
website to be able to access any sensitive emails or send malicious emails with your identity.

Modern web browsers defend against these attacks by enforcing the same-origin policy, which
isolates every webpage in your browser, except for when two webpages have the same origin.

19.1 Origins
The origin of a webpage is determined by its protocol, domain name, and port. For example,
the following URL has protocol http, domain name www.example.com, and port 80.

http://www.example.com/index.html

To check if two webpages have the same origin, the same-origin policy performs string match-
ing on the protocol, domain, and port. Two websites have the same origin if their protocols,
domains, and ports all exactly match.

Some examples of the same origin policy:

• http://wikipedia.org/a/ and http://wikipedia.org/b/ have the same origin. The
protocol (http), domain (wikipedia.org), and port (none), all match. Note that the
paths are not checked in the same-origin policy.

• http://wikipedia.org and http://www.wikipedia.org do not have the same origin,
because the domains (wikipedia.org and www.wikipedia.org) are different.

• http://wikipedia.org and https://wikipedia.org do not have the same origin,
because the protocols (http and https) are different.

• http://wikipedia.org:81 and http://wikipedia.org:82 do not have the same ori-
gin, because the ports (81 and 82) are different.

If a port is not specified, the port defaults to 80 for http and 443 for https. This means
http://wikipedia.org has the same origin as http://wikipedia.org:80, but it does not
have the same origin as http://wikipedia.org:81.

19.2 Exceptions
In general, the origin of a webpage is defined by its URL. However, there are a few exceptions
to this rule:

• JavaScript runs with the origin of the page that loads it. For example, if you include
<script src="http://google.com/tracking.js></script> on http://cs161.org,
the script has the origin of http://cs161.org.

• Images have the origin of the page that it comes from. For example, if you include
 on http://cs161.org, the image has the

CS 161 Notes 11 of 23

origin of http://google.com. The page that loads the image (http://cs161.org)
only knows about the image’s dimensions when loading it.

• Frames have the origin of the URL where the frame is retrieved from, not the origin
of the website that loads it. For example, if you include
<iframe src="http://google.com"></iframe> on http://cs161.org, the frame has
the origin of http://google.com.

JavaScript has a special function, postMessage, that allows webpages from different origins
to communicate with each other. However, this function only allows very limited function-
ality.

Further reading: Same-origin policy

CS 161 Notes 12 of 23

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

20 Cookies and Session Management
HTTP is a stateless protocol, which means each request and response is independent from
all other requests and responses. However, many features on the web require maintaining
some form of state. For example, when you log into your email account, you can stay logged
in across many requests and responses. If you enable dark mode on a website and make
subsequent requests to the website, you want the pages returned to have a dark background.
If you’re browsing an online shopping website, you want the items in your cart to be saved
across many requests and responses. Browser and servers store HTTP cookies to support
these features.

At a high level, you can think of cookies as pieces of data stored in your browser. When
you make a request to enable dark mode or add an item to your shopping cart, the server
sends a response with a Set-Cookie header, which tells your browser to store a new cookie.
These cookies encode state that should persist across multiple requests and responses, such
as your dark mode preference or a list of items in your shopping cart. In future requests,
your browser will automatically attach the relevant cookies to a request and send it to the
web server. The additional information in these cookies helps the web server customize its
response.

20.1 Cookie Attributes
Every cookie is a name-value pair. For example, a cookie darkmode=true has name darkmode
and value true.

For security and functionality reasons, we don’t want the browser to send every cookie in
every request. A user might want to enable dark mode on one website but not on another
website, so we need a way to only send certain cookies to certain URLs. Also, as we’ll see
later, cookies may contain sensitive login information, so sending all cookies in all requests
poses a security risk. These additional cookie attributes help the browser determine which
cookies should be attached to each request.

• The Domain and Path attributes tell the browser which URLs to send the cookie to.
See the next section for more details.

• The Secure attribute tells the browser to only send the cookie over a secure HTTPS
connection.

• The HttpOnly attribute prevents JavaScript from accessing and modifying the cookie.

• The expires field tells the browser when to stop remembering the cookie.

20.2 Cookie Policy: Domain and Path
The browser sends a cookie to a given URL if the cookie’s Domain attribute is a domain-suffix
of the URL domain, and the cookie’s Path attribute is a prefix of the URL path. In other
words, the URL domain should end in the cookie’s Domain attribute, and the URL path
should begin with the cookie’s Path attribute.

CS 161 Notes 13 of 23

For example, a cookie with Domain=example.com and Path=/some/path will be included on
a request to http://foo.example.com/some/path/index.html, because the URL domain
ends in the cookie domain, and the URL path begins with the cookie path.

Note that cookie policy uses a different set of rules than the same origin policy. This has
caused problems in the past.

20.3 Cookie Policy: Setting Domain and Path
For security reasons, we don’t want a malicious website evil.com to be able to set a cookie
with domain bank.com, since this would allow an attacker to affect the functionality of the
legitimate bank website. To prevent this, the cookie policy specifies that when a server sets
a cookie, the cookie’s domain must be a URL suffix of the server’s URL. In other words, for
the cookie to be set, the server’s URL must end in the cookie’s Domain attribute. Otherwise,
the browser will reject the cookie.

For example, a webpage with domain eecs.berkeley.edu can set a cookie with domain
eecs.berkeley.edu or berkeley.edu, since the webpage domain ends in both of these
domains.

This policy has one exception: cookies cannot have domains set to a top-level domain, such
as .edu or .com, since these are too broad and pose a security risk. If evil.com could set
cookies with domain .com, the attacker would have the ability to affect all .com websites,
since this cookie would be sent to all .com websites. The web browser maintains a list of
top-level domains, which includes two-level TLDs like .co.uk.

The cookie policy allows a server to set the Path attribute without any restrictions.3

Further reading: Cookies

20.4 Session Management
Cookies are often used to keep users logged in to a website over many requests and responses.
When a user sends a login request with a valid username and password, the server will
generate a new session token and send it to the user as a cookie. In future requests, the
browser will attach the session token cookie and send it to the server. The server maintains a
mapping of session tokens to users, so when it receives a request with a session token cookie,
it can look up the corresponding user and customize its response accordingly.

Secure session tokens should be random and unpredictable, so an attacker cannot guess
someone else’s session token and gain access to their account. Many servers also set the
HttpOnly and Secure flags on session tokens to protect them from being accessed by XSS
vulnerabilities or network attackers, respectively.

3The lack of restriction on the Path attribute has caused problems in the past, as cookies are presented
to the server and JavaScript as an unordered set of name/value pairs, but is stored internally as name/-
path/value tuples, so if two cookies with the same name and host but different path are present, both will
be presented to the server in unspecified order.

CS 161 Notes 14 of 23

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

It is easy to confuse session tokens and cookies. Session tokens are the values that the
browser sends to the server to associate the request with a logged-in user. Cookies are how
the browser stores and sends session tokens to the server. Cookies can also be used to save
other state, as discussed earlier. In other words, session tokens are a special type of cookie
that keep users logged in over many requests and responses.

CS 161 Notes 15 of 23

21 Cross-Site Request Forgery (CSRF)

21.1 CSRF Attacks
Using cookies and session tokens to keep a user logged in has some associated security risks.
In a cross-site request forgery (CSRF) attack, the attacker forces the victim to make an
unintended request. The victim’s browser will automatically attach the session token cookie
to the unintended request, and the server will accept the request as coming from the victim.

For example, suppose a website has an endpoint http://example.com/logout. To log out,
a user makes a GET request to this URL with the appropriate session token attached, and
the server checks the session token and performs the logout. If an attacker can trick a victim
into clicking this link, the victim will be logged out of the website without their knowledge.

CSRF attacks can also be executed on URLs with more malicious actions. For example,
a GET request to https://bank.com/transfer?amount=100&recipient=mallory with a
valid session token might send $100 to Mallory. An attacker could send an email to the
victim with the following HTML snippet:

This will cause the browser to try and fetch an image from the malicious URL by making a
GET request. Because the browser automatically attaches the session token to the request,
this causes the victim to unknowingly send $100 to Mallory.

It is usually bad practice to have HTTP GET endpoints that can change server state, so this
type of CSRF attack is less common in practice. However, CSRF attacks are still possible
over HTTP POST requests. HTML forms are a common example of a web feature that
generates HTTP POST requests. The user fills in the form fields, and when they click
the Submit button, the browser generates a POST request with the filled-out form fields.
Consider the following HTML snippet on an attacker’s webpage:

<form name=evilform action=https://bank.com/transfer>

<input name=amount value=100>

<input name=recipient value=mallory>

</form>

<script>document.evilform.submit();</script>

When the victim visits the attacker’s website, this HTML snippet will cause the victim’s
browser to make a POST request to https://bank.com/transfer with form input values
that transfer $100 to Mallory. Like before, the victim’s browser automatically attaches the
session token to the request, so the server accepts this POST request as if it was from the
victim.

21.2 Defense: CSRF Token
A good defense against CSRF attacks is to include a CSRF token on webpages. When
a legitimate user loads a webpage from the server with a form, the server will randomly

CS 161 Notes 16 of 23

generate a CSRF token and include it as an extra field in the form. (In practice, this field
often has a hidden attribute set so that it’s only visible in the HTML, so users don’t see
random strings every time they submit a form.) When the user submits the form, the form
will include the CSRF token, and the server will check that the CSRF token is valid. If the
CSRF token is invalid or missing, the server will reject the request.

To implement CSRF tokens, the server needs to generate a new CSRF token every time
a user requests a form. CSRF tokens should be random and unpredictable so an attacker
cannot guess the CSRF token. The server also needs to maintain a mapping of CSRF tokens
to session tokens, so it can validate that a request with a session token has the correct
corresponding CSRF token. This may require the server to store a large amount of state if
it expects heavy traffic.

If an attacker tries the attack in the previous section, the malicious form they create on
their website will no longer contain a valid CSRF token. The attacker could try querying
the server for a CSRF token, but it would not properly map to the victim’s session token,
because the victim never requested the form legitimately.

21.3 Defense: Referer Validation
Another way to defend against CSRF tokens is to check the Referer4 field in the HTTP
header. When a browser issues an HTTP request, it includes a Referer header which indicates
which URL the request was made from. For example, if a user fills out a form from a
legitimate bank website, the Referer header will be set to bank.com, but if the user visits
the attacker’s website and the attacker fills out a form and submits it, the Referer header
will be set to evil.com. The server can check the Referer header on each request and reject
any requests that have untrusted or suspicious Referer headers.

Referer validation is a good defense if it is included on every request, but it poses some
problems if someone submits a request with the Referer header left blank. If a server accepts
requests with blank Referer headers, it may be vulnerable to CSRF attacks, but if a server
rejects requests with blank Referer headers, it may reduce functionality for some users.

In practice, Referer headers may be removed by the browser, the operating system, or a
network monitoring system for privacy issues. For example, if you click on a link to visit a
website from a Google search, the website can know what Google search you made to visit
its website from the Referer header. Some modern browsers also have options that let users
disable sending the Referer header on all requests. Because not all requests are guaranteed
to have a Referer header, it is usually only used as a defense-in-depth strategy in addition
to CSRF tokens, instead of as the only defense against CSRF attacks.

Further reading: OWASP Cheat Sheet on CSRF

4Yes, the “Referer” field represents a roughly three decade old misspelling of referrer. This is a silly
example of how “legacy”, that is old design decisions, can impact things decades later because it can be very
hard to change things.

CS 161 Notes 17 of 23

https://owasp.org/www-community/attacks/csrf

22 Cross-Site Scripting (XSS)
XSS is a class of attacks where an attacker injects malicious JavaScript onto a webpage.
When a victim user loads the webpage, the user’s browser will run the malicious JavaScript.

XSS attacks are powerful because they subvert the same-origin policy. Normally, an attacker
can only run JavaScript on websites they control (such as https://evil.com), so their
JavaScript cannot affect websites with origins different from https://evil.com. However,
if the attacker can inject JavaScript into https://google.com, then when a user loads
https://google.com, their browser will run the attacker’s JavaScript with the origin of
https://google.com.

XSS attacks allow malicious JavaScript to run in the user’s browser with the same origin as
a legitimate website. This allows the attacker to perform any action the user can perform at
https://google.com or steal any user secrets associated with Google and send them back
to the attacker.

There are two main categories of XSS attacks: stored XSS and reflected XSS.

22.1 Stored XSS
In a stored XSS attack, the attacker finds a way to persistently store malicious JavaScript on
the web server. When the victim loads the webpage, the web server will load this malicious
JavaScript and display it to the user.

A classic example of stored XSS is a Facebook post. When a user makes a Facebook post,
the contents of the post are stored on Facebook’s servers, so that other users can load their
friends’ posts. If Facebook doesn’t properly check user inputs, an attacker could make a
post that says

<script>alert("XSS attack!")</script>

This post is now stored in Facebook’s servers. If another user loads the attacker’s posts,
they will receive an HTML page with this script on it, and the browser will run the script
and trigger a pop-up that says XSS attack!

22.2 Reflected XSS
In a reflected XSS attack, the attacker finds a vulnerable webpage where the server receives
user input in an HTTP request and displays the user input in the response.

A classic example of reflected XSS is a Google search. When you make an HTTP GET
request for a Google search, such as https://www.google.com/search?&q=cs161, the re-
turned webpage with search results will include something like

You searched for: cs161

If Google does not properly check user input, an attacker could create a malicious URL
https://www.google.com/search?&q=<script>alert("XSS attack!")</script>. When

CS 161 Notes 18 of 23

the victim loads this URL, Google will return

You searched for: <script>alert("XSS attack!")</script>

The victim’s browser will run the script and trigger a pop-up that says XSS attack!!

22.3 Defense: Sanitize Input
A good defense against XSS is checking for malicious input that might cause JavaScript
to run, such as <script> tags. However, it is very difficult to write a good detector that
catches all XSS attacks. For example, the following input causes JavaScript to run without
ever using <script> tags:

Just like SQL input escaping, sanitizing potentially dangerous input can be very tricky. For
example, consider an escaper that searches for all instances of <script> and </script> and
removes them. An attacker could provide this malicious input:

<scr<script>ipt>alert("XSS attack!")</scr<script>ipt>

After the escaper removes the two <script> tags it sees, the result is <script>alert("XSS
attack!")</script>, and the attacker can still execute JavaScript!

Another way to escape input is to replace potentially dangerous characters with their HTML
encoding. For example, the less than (<) and greater than (>) signs are encoded as < and
>, respectively. These encodings cause less than and greater than signs to display on the
webpage, without being interpreted as HTML.

Fortunately, there is a standardized set of sanitizations that is known to be robust.

22.4 Defense: Content Security Policy
Another XSS defense is using a content security policy (CSP) that specifies a list of allowed
domains where scripts can be loaded from. For example, cs161.org might allow scripts that
are loaded from *.cs161.org or *.google.com and disallow all other scripts, including any
inline scripts that are injected by the attacker.

CSPs are defined by a web server and enforced by a browser. In the HTTP response, the
server attaches a Content-Security-Policy header, and the browser checks any scripts
against the header.

If you enable CSP, you can no longer run any scripts that are embedded directly in the
HTML document. You can only load external scripts specified by the script tag and an
external URL. These scripts can only be fetched from the sites specified in the CSP. This
prevents an attacker from directly injecting scripts into an HTML document or modifying
the HTML document to fetch scripts from the attacker’s domain.

Further reading: OWASP Cheat Sheet on XSS

CS 161 Notes 19 of 23

https://owasp.org/www-community/attacks/xss/

23 Clickjacking/User Interface (UI) Attacks

23.1 Clickjacking Attacks
Many of the web attacks we’ve seen involve forcing a victim to click on an attacker-generated
link (reflected XSS), or forcing a victim to visit an attacker-controlled website (CSRF). How
might an attacker achieve this?

UI attacks (or clickjacking attacks) are a category of attacks that try to fool a victim into
inadvertently clicking on an attacker-supplied input. The end goal of these attacks is to
“steal” a click from the user, so that the user loads something controlled by the attacker
(possibly for a further attack). Many UI attacks rely on clever visual tricks to deceive the
user.

Download buttons are a classic example of clickjacking. When you visit a website to download
a file, you might see many different download buttons with different shapes and colors. One
of these is the true download button, and the others are malicious download buttons that
actually take you to attacker-controlled websites or perform other malicious actions in your
browser. An unwitting user might click on the wrong download button and be sent to the
attacker website. The malicious download buttons could be added to the website through a
different web exploit (e.g. stored XSS) or as a paid advertisement.

Depending on how much control the attacker has over the page, more sophisticated click-
jacking attacks are possible:

• The attacker could manipulate an HTML form so that the user sees a payment of $5,
but the underlying form will actually submit a payment of $50.

• The attacker could draw a fake cursor on the page. The user sees the fake cursor over
a legitimate button and clicks, but their real cursor has actually clicked on a malicious
link.

• The attacker could draw an entire browser on the page. The user sees an address
bar and clicks, but they have actually clicked on a fake address bar generated by the
attacker (with a malicious link behind the address bar).

23.2 Clickjacking Defenses
There are many ways to defend against clickjacking attacks. The general idea is to force the
user to make sure that they’re clicking on what they intended to click.

Confirmation pop-ups: If the user clicks on a link or button that will perform some
potentially dangerous activity (e.g. opening a website, executing Javascript, downloading a
file), display a pop-up asking the user to confirm that this is their intended action. However,
users might still click on the pop-up without reading it, especially if they’re too frequent.
Remember to consider human factors!

UI randomization: Randomize the location of certain elements on a website. For example,

CS 161 Notes 20 of 23

a submit button could alternately be located at the left side of the screen and the right side
of the screen. This makes it harder for attackers to draw a fake submit button over the real
submit button, because they won’t know where it’s located. However, webpages that look
different every time could pose usability problems.

Direct the user’s attention to their click: This can be done by freezing the rest of the
screen besides the area directly around the user’s cursor, or by highlighting the user’s cursor.
This will make the user less likely to be fooled by a fake cursor and force them to focus on
where their real cursor is pointing. The user’s clicks can also be invalidated if the user tries
to click outside of a relevant portion of the screen.

Delay the click: Force the user to hover over the desired button for some amount of time
before allowing the user to click the button. This forces the user to spend some time looking
at where they’re clicking before they actually perform the click.

CS 161 Notes 21 of 23

24 CAPTCHAs
24.1 Using CAPTCHAs
Consider the following scenario: you’ve created a website that allows users to upload a
picture. Your server will scan the picture for text using a compute-intensive algorithm and
return the text to the user. An adversary wants to mount a denial-of-service (DoS) attack
on your website by uploading lots of bogus images, forcing your server to run the expensive
algorithm on all the bogus images.

Consider another scenario: Your website has a login page. An adversary wants to steal a
legitimate user’s account, so they try to brute-force the user’s password by submitting login
requests with every possible password.

Generally, when we’re building websites, we’d like to build websites for people: we don’t
want robots. CAPTCHAs are a test that ask the fundamental question: Is this a human?
Consequently, when we design CAPTCHAs, we want to choose problems that are easy for
humans, but difficult for computers.

CAPTCHAs are primarily focused on machine vision problems, which are traditionally diffi-
cult for computers to solve. Historically, CAPTCHAs consist of a series of distorted letters or
words. There are a wide variety of CAPTCHAs: some with color, some with low contrasts,
some with merged-together letters, etc. A more recent example you may be familiar with
is Google’s reCAPTCHA algorithm, which shows you some images and asks you to identify
the objects in the pictures (e.g. “Select all images with boats.”)

24.2 Issues with CAPTCHAs
There’s an inherent arms race present here: as solving algorithms get better, our defense
deteriorates. The reason why CAPTCHAs have gotten so much harder over the last decade
is because individuals have spent time creating much better solving algorithms - and we’re
reaching a point where it’s becoming more and more difficult for humans to solve CAPTCHAs
quickly.

Of course, those implementing CAPTCHAs often miss the original motivation behind their
development. The original CAPTCHA paper included the subtitle ”How Lazy Cryptogra-
phers do AI” as the intent was to force attackers to solve harder problems in machine vision.
Now modern CAPTCHAs such as Google ReCAPTCHA are focused on getting humans
to provide training data for AI systems which means the CAPTCHAs are inherently self
defeating for those deploying the CAPTCHA.

In some cases, it’s necessary to provide an alternative, accessible CAPTCHA method, such
as an audio-based spoken phrase that a human is required to transcribe. In this case,
we’ve unintentionally opened up a new attack vector: attackers may now break target the
audio-based CAPTCHA, which may be easier to solve than the traditional image-based
CAPTCHA.

If you search “crack CAPTCHA” on Google, you’ll likely find many CAPTCHA solving

CS 161 Notes 22 of 23

services for as low as $0.10 cents per CAPTCHA. These services use humans to do the
actual work. These days, a CAPTCHA no longer asks the question of ”Is this a human or
a bot?” Instead, it says ”Is this a human, or a bot willing to spend a fraction of a penny?”

The takeaway: if something is worth $0.10 or more to an attacker, CAPTCHAs do not
work.

CS 161 Notes 23 of 23

	SQL Injection
	Code Injection
	SQL Injection Example
	SQL Injection Strategies
	Defense: Escape Inputs
	Defense: Parameterized SQL/Prepared Statements

	Introduction to the Web
	URLs
	HTTP
	HTTP: The Request-Response Model
	HTTP: Structure of a Request
	HTTP: GET vs. POST
	Elements of a Webpage
	Elements of a Webpage: HTML
	Elements of a Webpage: CSS
	Elements of a Webpage: JavaScript

	Same-Origin Policy
	Origins
	Exceptions

	Cookies and Session Management
	Cookie Attributes
	Cookie Policy: Domain and Path
	Cookie Policy: Setting Domain and Path
	Session Management

	Cross-Site Request Forgery (CSRF)
	CSRF Attacks
	Defense: CSRF Token
	Defense: Referer Validation

	Cross-Site Scripting (XSS)
	Stored XSS
	Reflected XSS
	Defense: Sanitize Input
	Defense: Content Security Policy

	Clickjacking/User Interface (UI) Attacks
	Clickjacking Attacks
	Clickjacking Defenses

	CAPTCHAs
	Using CAPTCHAs
	Issues with CAPTCHAs

