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In this section, we will look at some general principles for secure system design. These ideas
also allow us to examine existing systems to understand their security properties.

In other words, this section contains a list of “things to remember” when thinking about
security.

We teach these security principles because they appear frequently in all aspects of the security
field. You may hear about them in academic literature and in later parts of this class.

1 Principles for Building Secure Systems
1.1 Know your threat model
A threat model is a model of who your attacker is and what resources they have. Attackers
target systems for various reasons, be it money, politics, fun, etc. Some aren’t looking for
anything logical–some attackers just want to watch the world burn.

Take, for example your own personal security. Understanding your threat model has to do
with understanding who and why might someone attack you; criminals, for example, could
attack you for money, teenagers could attack you for laughs (or to win a dare), governments
might spy on you to collect intelligence (but you probably are not important enough for that
just yet), or intimate partners could spy on you.

Once you understand who your attacker is and what resources they might possess, there are
some common assumptions that we take into account for attackers:

1. The attacker can interact with your systems without anyone noticing, meaning that
you might not always be able to detect the attacker tampering with your system before
they attack.

2. The attacker has some general information about your system, namely the operating
system, any potential software vulnerabilities, etc.
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3. The attacker is persistent and lucky; for example, if an attack is successful 1/1,000,000
times, the attacker will try 1,000,000 times.

4. The attacker has the resources required to undertake the attack (up to an extent). This
will be touched on in ”Securities is Economics“, but depending on who your threat
model is, assume that the attacker has the ability and resources to perform the attack.

5. The attacker can coordinate several complex attacks across various systems, meaning
that the attacker does not have to mount only a single attack on one device, but rather
can attack your entire network at the same time.

6. Every system is a potential target. For example, a casino was once hacked because a
fish-tank thermometer was hacked within the network.

Finally, be extremely vigilant when dealing with old code as the assumptions that were
originally made might no longer be valid and the thread model might have changed. When
the Internet was first created, for example, it was mostly populated by academics who
(mostly) trusted one another. As such, several networking protocols made the assumption
that all other network participants could be trusted and were not malicious. Today however,
the Internet is populated by billions of devices, some of whom are malicious. As such, many
network protocols that were designed a long time ago are now suffering under the strain of
attack.

1.2 Consider Human Factors
The key idea here is that security systems must be usable by ordinary people, and therefore
must be designed to take into account the role that humans will play. As such, you must
remember that programmers make mistakes and will use tools that allow them to make
mistakes (like C and C++). Similarly, users like convenience; if a security system is unusable
and not user-friendly, no matter how secure it is, it will go unused. Users will find a way to
subvert security systems if it makes their lives easier.

No matter how secure your system is, it all comes down to people. Social engineering attacks,
for example, exploit other people’s trust and access for personal gain. The takeaway here
is to consider the tools that are presented to users, and try to make them fool-proof and as
user-friendly as possible.

For example, your computer pops up with a notification that tells you it needs to restart
to “finish installing important updates”; if you are like a majority of the user population,
you likely click “remind me later”, pushing off the update. If the computer is attempting
to fix a security patch, the longer the update gets pushed, the more time your computer
is vulnerable to an attack. However, since the update likely inconveniences the user, they
forego the extra security for convenience.

Another example: the NSA’s cryptographic equipment stores its key material on a small
physical token. This token is built in the shape of an ordinary door key. To activate an
encryption device, you insert the key into a slot on the device and turn the key. This
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interface is intuitively understandable, even for 18-year-old soldiers out in the field with
minimal training in cryptography.

1.3 Security is economics
No system is completely, 100% secure against all attacks; rather, systems only need to be
protected against a certain level of attacks. Since more security usually costs more money
to implement, the expected benefit of your defense should be proportional to the expected
cost of the attack. Essentially, there is no point putting a $100 lock on a $1 item.

To understand this concept, we can think about physical safes, which come with a rating
of their level of security. For instance, a consumer grade safe, a TL-15, might indicate that
it will resist attacks for up to 15 minutes by anyone with common tools, and might cost
around $3,000, while a TL-30, a safe that would resist attacks for up to 30 minutes with
common tools might cost around $5000. Finally, a TXTL-60 (a super high-end safe), might
resist attacks for up to 60 minutes with common tools, a cutting torch, and up to 4 oz of
explosives, and would cost upwards of $50,000. The idea is that security usually comes at
a cost. A more secure safe is going to cost you more than a less secure safe. With infinite
money, you could use the best safe available to lock all your valuables, but since you don’t
have infinite money, you must determine how valuable the thing you want to protect is, and
you must judge how much you are willing to pay to protect it. This illustrates that security
is often a cost-benefit analysis where someone needs to make a decision regarding how much
security is worth.

A corollary of this principle is you should focus your energy on securing the weakest links.
Security is like a chain: a system is only as secure as the weakest link. Attackers follow the
path of least resistance, and they will attack the system at its weakest point. There is no
sense putting an expensive high-end deadbolt on a screen door; attackers aren’t going to
bother trying to pick the lock when they can just rip out the screen and step through.

A closely related principle is conservative design, which states that systems should be eval-
uated according to the worst security failure that is at all plausible, under assumptions
favorable to the attacker. If there is any plausible circumstance under which the system can
be rendered insecure, then it is prudent to consider seeking a more secure system. Clearly,
however, we must balance this against “security is economics”: that is, we must decide the
degree to which our threat model indicates we indeed should spend resources addressing the
given scenario.

1.4 Detect if you can’t prevent
If prevention is stopping an attack from taking place, detection is simply learning that the
attack has taken place, and response would be doing something about the attack. The idea
is that if you cannot prevent the attack from happening, you should at least be able to know
that the attack has happened. Once you know that the attack has happened, you should
find a way to respond, since detection without response is pointless.

For example, the Federal Information Processing Standard (FIPS) are publicly announced
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standards developed for use in computer systems by various government contractors. Type
III devices—the highest level of security in the standard, are intended to be tamper-resistant.
However, Type III devices are very expensive. Type II devices are only required to be
tamper-evident, so that if someone tampers with them, this will be visible (e.g., a seal will
be visibly broken). This means they can be built more cheaply and used in a broader array
of applications.

When dealing with response, you should always assume that bad things will happen, and
therefore prepare your systems for the worst case outcome. You should always plan security
in a way that lets you get back to some form of a working state. For example, keeping offsite
backups of computer systems is a great idea. Even if your system is completely destroyed,
it should be no big deal since all your data is backed up in some other location.

1.5 Defense in depth
The key idea of defense in depth is that multiple types of defenses should be layered together
so an attacker would have to breach all the defenses to successfully attack a system.

Take, for example, a castle defending its king. The castle has high walls. Behind those
walls might be a moat, and then another layer of walls. Layering multiple simple defensive
strategies together can make security stronger. However, defense in depth is not foolproof–
no amount of walls will stop siege cannons from attacking the castle. Also, beware of
diminishing returns–if you’ve already built 100 walls, the 101st wall may not add enough
additional protection to justify the cost of building it (security is economics).

Another example of defense in depth is through a composition of detectors. Say you had
two detectors, D1 and D2, which have false positive rates of FP1 and FP2 respectively, and
false negative rates of FN1 and FN2, respectively. One way to use the two detectors would
be to have them in parallel, meaning that either detector going off would trigger a response.
This would increase the false positive rate and decrease the false negative rate. On the other
hand, we could also have the detectors in series, meaning that both detectors have to alert
in order to trigger a response. In this case, the false positive rate would decrease while the
false negative rate would increase.

1.6 Least privilege
Consider a research building home to a team of scientists as well as other people hired to
maintain the building (janitors, IT staff, kitchen staff, etc.) Some rooms with sensitive
research data might be only accessible to trusted scientists. These rooms should not be
accessible to the maintenance staff (e.g. janitors). For best security practices, any one party
should only have as much privilege as it needs to play its intended role.

In technical terms, give a program the set of access privileges that it legitimately needs to
do its job—but nothing more. Try to minimize how much privilege you give each program
and system component.

Least privilege is an enormously powerful approach. It doesn’t reduce the probability of
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failure, but it can reduce the expected cost of failures. The less privilege that a program
has, the less harm it can do if it goes awry or becomes subverted.

For instance, the principle of least privilege can help reduce the damage caused by buffer
overflow. (We’ll discuss buffer overflows more in the next section.) If a program is com-
promised by a buffer overflow attack, then it will probably be completely taken over by an
intruder, and the intruder will gain all the privileges the program had. Thus, the fewer
privileges that a program has, the less harm is done if it should someday be penetrated by
a buffer overflow attack.

How does Unix do, in terms of least privilege? Answer: Pretty lousy. Every program gets
all the privileges of the user that invokes it. For instance, if I run a editor to edit a single
file, the editor receives all the privileges of my user account, including the powers to read,
modify, or delete all my files. That’s much more than is needed; strictly speaking, the editor
probably only needs access to the file being edited to get the job done.

How is Windows, in terms of least privilege? Answer: Just as lousy. Arguably worse, because
many users run under an Administrator account, and many Windows programs require that
you be Administrator to run them. In this case, every program receives total power over the
whole computer. Folks on the Microsoft security team have recognized the risks inherent
in this, and have taken many steps to warn people away from running with Administrator
privileges, so things have gotten better in this respect.

1.7 Separation of responsibility
Split up privilege, so no one person or program has complete power. Require more than one
party to approve before access is granted.

In a nuclear missile silo, for example, two launch officers must agree before the missile can
be launched.

Another example of this principle in action is in a movie theater, where you pay the teller
and get a ticket stub; then when you enter the movie theater, a separate employee tears
your ticket in half and collects one half of it, putting it into a lockbox. Why bother giving
you a ticket that 10 feet later is going to be collected from you? One answer is that this
helps prevent insider fraud. Tellers are low-paid employees, and they might be tempted to
under-charge a friend, or to over-charge a stranger and pocket the difference. The presence
of two employees helps keep them both honest, since at the end of the day, the manager
can reconcile the number of ticket stubs collected against the amount of cash collected and
detect some common shenanigans.

In summary, if you need to perform a privileged action, require multiple parties to work
together to exercise that privilege, since it is more likely for a single party to be malicious
than for all of the parties to be malicious and collude with one another.
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1.8 Ensure complete mediation
When enforcing access control policies, make sure that you check every access to every
object. This kind of thinking is helpful to detect where vulnerabilities could be. As such,
you have to ensure that all access is monitored and protected. One way to accomplish this
is through a reference monitor, which is a single point through which all access must occur.

1.9 Shannon’s Maxim
Shannon’s Maxim states that the attacker knows the system that they are attacking.

“Security through obscurity” refers to systems that rely on the secrecy of their design,
algorithms, or source code to be secure. The issue with this, however, is that it is extremely
brittle and it is often difficult to keep the design of a system secret from a sufficiently
motivated attacker. Historically, security through obscurity has a lousy track record: many
systems that have relied upon the secrecy of their code or design for security have failed
miserably.

In defense of security through obscurity, one might hear reasoning like: “this system is so
obscure, only 100 people around the world understand anything about it, so what are the
odds that an adversary will bother attacking it?” One problem with such reasoning is that
such an approach is self-defeating. As the system becomes more popular, there will be more
incentive to attack it, and then we cannot rely on its obscurity to keep attackers away.

This doesn’t mean that open-source applications are necessarily more secure than closed-
source applications. But it does mean that you shouldn’t trust any system that relies on
security through obscurity, and you should probably be skeptical about claims that keeping
the source code secret makes the system significantly more secure.

As such, you should never rely on obscurity as part of your security. Always assume that
the attacker knows every detail about the system that you are working with (including its
algorithms, hardware, defenses, etc.)

A closely related principle is Kerckhoff’s Principle, which states that cryptographic systems
should remain secure even when the attacker knows all internal details of the system. (We’ll
discuss cryptographic systems more in the cryptography section.) The secret key should be
the only thing that must be kept secret, and the system should be designed to make it easy
to change keys that are leaked (or suspected to be leaked). If your secrets are leaked, it is
usually a lot easier to change the key than to replace every instance of the running software.

1.10 Use fail-safe defaults
Choose default settings that “fail safe”, balancing security with usability when a system goes
down. When we get to firewalls, you will learn about default-deny polices, which start by
denying all access, then allowing only those which have been explicitly permitted. Ensure
that if the security mechanisms fail or crash, they will default to secure behavior, not to
insecure behavior.
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For example, firewalls must explicitly decide to forward a given packet or else the packet is
lost (dropped). If a firewall suffers a failure, no packets will be forwarded. Thus, a firewall
fails safe. This is good for security. It would be much more dangerous if it had fail-open
behavior, since then all an attacker would need to do is wait for the firewall to crash (or
induce a crash) and then the fort is wide open.

1.11 Design security in from the start
Trying to retrofit security to an existing application after it has already been spec’ed, de-
signed, and implemented is usually a very difficult proposition. At that point, you’re stuck
with whatever architecture has been chosen, and you don’t have the option of decomposing
the system in a way that ensures least privilege, separation of privilege, complete mediation,
defense in depth, and other good properties. Backwards compatibility is often particularly
painful, because you can be stuck with supporting the worst insecurities of all previous
versions of the software.

Finally, let’s examine three principles that are widely accepted in the cryptographic com-
munity (although not often articulated) that can play a useful role in considering computer
system security as well.

1.12 The Trusted Computing Base (TCB)
Now that you understand some of the important principles for building secure systems, we
will try to see what you can do at design time to implement these principles and improve
security. The question we want to answer is how can you choose an architecture that will
help reduce the likelihood of flaws in your system, or increase the likelihood that you will
be able to survive such flaws? We begin with a powerful concept, the notion of a trusted
computing base, also known as the TCB.

In any system, the trusted computing base (TCB) is that portion of the system that must
operate correctly in order for the security goals of the system to be assured. We have to rely
on every component in the TCB to work correctly. However, anything that is outside the
TCB isn’t relied upon in any way; even if it misbehaves or operates maliciously, it cannot
defeat the system’s security goals. Generally, the TCB is made to be as small as possible
since a smaller, simpler TCB is easier to write and audit.

Suppose the security goal is that only authorized users are allowed to log into my system
using SSH. What is the TCB? Well, the TCB includes the SSH daemon, since it is the
one that makes the authentication and authorization decisions; if it has a bug, or if it
was programmed to behave maliciously, then it will be able to violate my security goal by
allowing access to unauthorized users. The TCB also includes the operating system, since
the operating system has the power to tamper with the operation of the SSH daemon (e.g.,
by modifying its address space). Likewise, the CPU is in the TCB, since we are relying
upon the CPU to execute the SSH daemon’s machine instructions correctly. Suppose a
web browser application is installed on the same machine; is the web browser in the TCB?
Hopefully not! If we’ve built the system in a way that is at all reasonable, the SSH daemon
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is supposed to be protected (by the operating system’s memory protection) from interference
by unprivileged applications, like a web browser.

TCB Design Principles: Several principles guide us when designing a TCB:

• Unbypassable (or completeness): There must be no way to breach system security by
bypassing the TCB.

• Tamper-resistant (or security): The TCB should be protected from tampering by
anyone else. For instance, other parts of the system outside the TCB should not be
able to modify the TCB’s code or state. The integrity of the TCB must be maintained.

• Verifiable (or correctness): It should be possible to verify the correctness of the TCB.
This usually means that the TCB should be as simple as possible, as generally it is
beyond the state of the art to verify the correctness of subsystems with any appreciable
degree of complexity.

Keeping the TCB simple and small is excellent. The less code you have to write, the fewer
chances you have to make a mistake or introduce some kind of implementation flaw. Industry
standard error rates are 1–5 defects per thousand lines of code. Thus, a TCB containing
1,000 lines of code might have 1–5 defects, while a TCB containing 100,000 lines of code
might have 100–500 defects. If we need to then try to make sure we find and eliminate any
defects that an adversary can exploit, it’s pretty clear which one to pick!1 The lesson is to
shed code: design your system so that as much code as possible can be moved outside the
TCB.

Benefits of TCBs: The notion of a TCB is a very powerful and pragmatic one as it allows
a primitive yet effective form of modularity. It lets us separate the system into two parts:
the part that is security-critical (the TCB), and everything else.

This separation is a big win for security. Security is hard. It is really hard to build systems
that are secure and correct. The more pieces the system contains, the harder it is to assure
its security. If we are able to identify a clear TCB, then we will know that only the parts in
the TCB must be correct for the system to be secure. Thus, when thinking about security,
we can focus our effort where it really matters. And, if the TCB is only a small fraction of
the system, we have much better odds at ending up with a secure system: the less of the
system we have to rely upon, the less likely that it will disappoint.

In summary, some good principles are:

• Know what is in the TCB. Design your system so that the TCB is clearly identifiable.

• Try to make the TCB unbypassable, tamper-resistant, and as verifiable as possible.

• Keep It Simple, Stupid (KISS). The simpler the TCB, the greater the chances you can
get it right.

• Decompose for security. Choose a system decomposition/modularization based not
just on functionality or performance grounds—choose an architecture that makes the

1Windows XP consisted of about 40 million lines of code—all of which were in the TCB. Yikes!
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TCB as simple and clear as possible.

1.13 TOCTTOU Vulnerabilities
A common failure of ensuring complete mediation involves race conditions. The time of
check to time of use (TOCTTOU) vulnerability usually arises when enforcing access control
policies such as when using a reference monitor. Consider the following code:

procedure withdraw(amount w) {

// contact central server to get balance

1. let b := balance

2. if b < w, abort

// contact central server to set the balance

3. set balance := b - w

4. give w dollars to the user

}

This code takes as input the amount you want to withdraw, w. It then looks up your bank
balance in the database; if you do not have enough money in your account to withdraw the
specified amount, then it aborts the transaction. If you do have enough money, it decrements
your balance by the amount that you want to withdraw and then dispenses the cash to you.

Suppose that multiple calls to withdraw can take place concurrently (i.e. two separate
ATMs). Also suppose that the attacker can somehow pause the execution of procedure on
one ATM.

So suppose that your current account balance is $100 and you want to withdraw $100. At
the first ATM, suppose you pause it after step 2. Then, you go over to the second ATM
and proceed to withdraw $100 successfully (meaning that your account balance should now
be $0). You then go back to the first ATM and unpause the procedure; since the account
balance check was completed before you withdrew the money from the second ATM, the
first ATM still thinks you have $100 in your account, and it allows you to withdraw another
$100! So despite your bank account having only $100 to begin with, you ended up with $200.

This is known as a Time-Of-Check To Time-Of-Use (TOCTTOU) vulnerability, because
between the check and the use of whatever state was checked, the state somehow changed.
In the above example, between the time that the balance was checked and the time that
balance was set, the balance was somehow changed.
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