
Memory
Safety

CS 161
Computer Security Textbook

An online version is available at https://textbook.cs161.org.

Textbook by David Wagner, Nicholas Weaver, Peyrin Kao,
Fuzail Shakir, Andrew Law, and Nicholas Ngai

Additional contributions by Noura Alomar, Sheqi Zhang, and Shomil Jain

Last update: August 26, 2021

Contact for corrections: cs161-staff@berkeley.edu

In this section, we will be looking at software security—problems associated with the software
implementation. You may have a perfect design, a perfect specification, perfect algorithms,
but still have implementation vulnerabilities. In fact, after configuration errors, implemen-
tation errors are probably the largest single class of security errors exploited in practice.

In particular, we will look at a particularly prevalent class of software flaws, those that
concern memory safety. Memory safety refers to ensuring that attackers cannot read or
write to memory locations other than those intended by the programmer.

Because many security-critical applications have been written in C, and because C is not a
memory-safe language, we will focus on memory safety vulnerabilities and defenses in C.

2 x86 Assembly and Call Stack
This section reviews some relevant concepts from CS 61C and introduces x86 assembly, which
is different from the RISC-V assembly taught in 61C.

2.1 Number representation
At the lowest level, computers store memory as individual bits, where each bit is either 0 or
1. There are several units of measurement that we use for collections of bits:

• 1 nibble = 4 bits

• 1 byte = 8 bits

• 1 word = 32 bits (on 32-bit architectures)

A “word” is the size of a pointer, which depends on your CPU architecture. Real-world
64-bit architectures often include stronger defenses against memory safety exploits, so for
ease of instruction, this class uses 32-bit architectures unless otherwise stated.

For example, the string 1000100010001000 has 16 bits, or 4 nibbles, or 2 bytes.

CS 161 Notes 1 of 39

https://textbook.cs161.org
https://people.eecs.berkeley.edu/~daw/
https://www1.icsi.berkeley.edu/~nweaver
https://peyrin.github.io
https://ngai.me
https://shomil.me

Sometimes we use hexadecimal as a shorthand for writing out long strings of bits. In hex-
adecimal shorthand, a nibble can be written as a single hexadecimal digit. The chart below
shows conversions between nibbles written in binary and hexadecimal.

Binary Hexadecimal Binary Hexadecimal
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

To distinguish between binary and hexadecimal strings, we put 0b before binary strings and
0x before hexadecimal strings.

Sanity check: Convert the binary string 0b1100000101100001 into hexadecimal.1

2.2 Compiler, Assembler, Linker, Loader (CALL)
Recall from 61C that there are four main steps to running a C program.

1. The compiler translates your C code into assembly instructions. 61C uses the RISC-V
instruction set, but in 161, we use x86, which is more commonly seen in the real world.

2. The assembler translates the assembly instructions from the compiler into machine
code (raw bits). You might remember using the RISC-V green sheet to translate
assembly instructions into raw bits in 61C. This is what the assembler does.

3. The linker resolves dependencies on external libraries. After the linker is finished
linking external libraries, it outputs a binary executable of the program that you can
run (you can mostly ignore the linker for the purposes of 161).

4. When the user runs the executable, the loader sets up an address space in memory
and runs the machine code instructions in the executable.

2.3 C memory layout
At runtime, the operating system gives the program an address space to store any state
necessary for program execution. You can think of the address space as a large, contiguous
chunk of memory. Each byte of memory has a unique address.

The size of the address space depends on your operating system and CPU architecture. In
a 32-bit system, memory addresses are 32 bits long, which means the address space has 232

bytes of memory. In a 64-bit system, memory addresses are 64 bits long. (Sanity check: how
big is the address space in this system?2) In this class, unless otherwise stated we’ll be using

1Answer: Using the table to look up each sequence of 4 bits, we get 0xC161.
2Answer: 264 bytes.

CS 161 Notes 2 of 39

32-bit systems.

We can draw the memory layout as one long array with 232 elements, where each element
is one byte. The leftmost element has address 0x00000000, and the rightmost element has
address 0xFFFFFFFF.3

Figure 1: C memory layout drawn as an array. Each box fits one byte of data.

However, this is hard to read, so we usually draw memory as a grid of bytes. In the grid,
the bottom-left element has address 0x00000000, and the top-right element has address
0xFFFFFFFF. Addresses increase as you move from left to right and from bottom to top.

3In reality your program may not have all this memory, but the operating system gives the program the
illusion that it has access to all this memory. Refer to the virtual memory unit in CS 61C or take CS 162 to
learn more.

CS 161 Notes 3 of 39

Figure 2: C memory layout drawn as a grid. Each box fits one byte of data.

Although we can draw memory as a grid with annotations and labels, remember that the
program only sees a huge array of raw bytes. It is up to the programmer and the compiler
to manipulate this chunk of raw bytes to create objects like variables, pointers, arrays, and
structs.

When a program is being run, the address space is divided into four sections. From lowest
address to highest address, they are:

• The code section contains the executable instructions of the program (i.e. the code
itself). Recall that the assembler and linker output raw bytes that can be interpreted
as machine code. These bytes are stored in the code section.

• The static section contains constants and static variables that never change during
program execution, and are usually allocated when the program is started.

• The heap stores dynamically allocated data. When you call malloc in C, memory is
allocated on the heap and given to you for use until you call free. The heap starts at
lower addresses and “grows up” to higher addresses as more memory is allocated.

• The stack stores local variables and other information associated with function calls.
The stack starts at higher addresses and “grows down” as more functions are called.

Figure 3: The four sections of the C address space.

2.4 Little-endian words
x86 is a little-endian system. This means that when storing a word in memory, the least
significant byte is stored at the lowest address, and the most significant byte is stored at the

CS 161 Notes 4 of 39

highest address. For example, here we are storing the word 0x44332211 in memory:

Figure 4: Storing the word 0x44332211 in little-endian.

Note that the least significant byte 0x11 is stored at the lowest address, and the most
significant byte 0x44 is stored at the highest address.

Because we work with words so often, sometimes we will write words on the memory diagram
instead of individual bytes. Each word is 4 bytes, so each row of the diagram has exactly
one word.

Using words on the diagram lets us abstract away little-endianness when working with mem-
ory diagrams. However, it’s important to remember that the bytes are actually being stored
in little-endian format.

2.5 Registers
In addition to the 232 bytes of memory in the address space, there are also registers, which
store memory directly on the CPU. Each register can store one word (4 bytes). Unlike
memory, registers do not have addresses. Instead, we refer to registers using names. There
are three special x86 registers that are relevant for these notes:

• eip is the instruction pointer, and it stores the address of the machine instruction
currently being executed. In RISC-V, this register is called the PC (program counter).

• ebp is the base pointer, and it stores the address of the top of the current stack frame.
In RISC systems, this register is called the FP (frame pointer)4.

• esp is the stack pointer, and it stores the address of the bottom of the current stack
frame. In RISC-V, this register is called SP (stack pointer).

Note that the top of the current stack frame is the highest address associated with the
current stack frame, and the bottom of the stack frame is the lowest address associated with
the current stack frame.

If you’re curious, the e in the register abbreviations stands for “extended” and indicates that
we are using a 32-bit system (extended from the original 16-bit systems).

4RISC systems often omit this register because it is not necessary with the RISC stack design. For
example, in RISC-V, FP is sometimes renamed s0 and used as a general-purpose register

CS 161 Notes 5 of 39

Since the values in these three registers are usually addresses, sometimes we will say that a
register points somewhere in memory. This means that the address stored in the register is
the address of that location in memory. For example, if we say eip is pointing to 0xDEADBEEF,
this means that the eip register is storing the value 0xDEADBEEF, which can be interpreted
as an address to refer to a location in memory.

Sanity check: Which section of C memory (code, static, heap, stack) do each of these registers
usually point to?5

2.6 Stack: Pushing and popping
Sometimes we want to remember a value by saving it on the stack. There are two steps
to adding a value on the stack. First, we have to allocate additional space on the stack by
decrementing the esp. Then, we store the value in the newly allocated space. The x86 push

instruction does both of these steps to add a value to the stack.

Figure 5: push %ebx decrements esp by 4 and stores the value in the ebx register on the
stack.

We may also want to remove values from the stack. The x86 pop instruction increments esp
to remove the next value on the stack. It also takes the value that was just popped and
copies the value into a register.

Note that when we pop a value off the stack, the value is not wiped away from memory.
However, we increment esp so that the popped value is now below esp. The esp register points
to the bottom of the stack, so the popped value below esp is now in undefined memory.

5Answer: eip points to the code section, where instructions are stored. ebp and esp point to the stack
section.

CS 161 Notes 6 of 39

Figure 6: pop %eax stores the lowest value on the stack in the eax register and increments
esp by 4.

(eax and ebx are general-purpose registers in x86. We use them here as an example of
pushing and popping from the stack, but you don’t need to know anything else about these
registers.)

2.7 x86 calling convention
This class uses AT&T x86 syntax (since that is what GDB uses). This means that the
destination register comes last; note that this is in contrast with RISC-V assembly, where
the destination register comes first. Suppose our assembly instruction was addl $0x8, %ebx;
here, the opcode is addl, the source is $0x8, and the destination is %ebx, so in pseudocode
this can be read as EBX = EBX + 0x8.

References to registers are preceded with a percent sign, so if we wanted to reference eax,
we would do so as %eax. Immediates are preceded with a dollar sign (i.e. $1, $0x4, etc.).
Furthermore, memory references use parenthesis and can have immediate offsets; for example,
12(%esp) dereferences memory 12 bytes above the address contained in ESP. If parentheses
are used without an immediate offset, the offset can be thought of as an implicit 0.

Suppose our assembly instruction was xorl 4(%esi), %eax; here, the opcode is xorl, the
source is 4(%esi), and the destination is %eax. As such, in pseudocode, this can be written
as EAX = EAX ^ *(ESI + 4). Since this is a memory reference, we are dereferencing the
value 4 bytes above the address stored in ESI.

2.8 x86 function calls
When a function is called, the stack allocates extra space to store local variables and other
information relevant to that function. Recall that the stack grows down, so this extra space
will be at lower addresses in memory. Once the function returns, the space on the stack is
freed up for future function calls. This section explains the steps of a function call in x86.

CS 161 Notes 7 of 39

Recall that in a function call, the caller calls the callee. Program execution starts in the
caller, moves to the callee as a result of the function call, and then returns to the caller after
the function call completes.

When we call a function in x86, we need to update the values in all three registers we’ve
discussed:

• eip, the instruction pointer, is currently pointing at the instructions of the caller. It
needs to be changed to point to the instructions of the callee.

• ebp and esp currently point to the top and bottom of the caller stack frame, respec-
tively. Both registers need to be updated to point to the top and bottom of a new
stack frame for the callee.

When the function returns, we want to restore the old values in the registers so that we can
go back to executing the caller. When we update the value of a register, we need to save its
old value on the stack so we can restore the old value after the function returns.

There are 11 steps to calling an x86 function and returning. In this example, main is the
caller function and foo is the callee function. In other words, main calls the foo function.

CS 161 Notes 8 of 39

Here is the stack before the
function is called. ebp and
esp point to the top and
bottom of the caller stack
frame.

1. Push arguments
onto the stack. RISC-V
passes arguments by storing
them in registers, but x86
passes arguments by push-
ing them onto the stack.
Note that esp is decre-
mented as we push argu-
ments onto the stack. Ar-
guments are pushed onto
the stack in reverse order.

CS 161 Notes 9 of 39

2. Push the old eip (rip)
on the stack. We are
about to change the value in
the eip register, so we need
to save its current value on
the stack before we over-
write it with a new value.
When we push this value on
the stack, it is called the old
eip or the rip (return in-
struction pointer).6

3. Move eip. Now that
we’ve saved the old value
of eip, we can safely change
eip to point to the instruc-
tions for the callee function.

CS 161 Notes 10 of 39

4. Push the old ebp
(sfp) on the stack. We
are about to change the
value in the ebp register,
so we need to save its cur-
rent value on the stack be-
fore we overwrite it with a
new value. When we push
this value on the stack, it is
called the old ebp or the sfp
(saved frame pointer). Note
that esp has been decre-
mented because we pushed
a new value on the stack.

5. Move ebp down. Now
that we’ve saved the old
value of ebp, we can safely
change ebp to point to the
top of the new stack frame.
The top of the new stack
frame is where esp is cur-
rently pointing, since we are
about to allocate new space
below esp for the new stack
frame.

CS 161 Notes 11 of 39

6. Move esp down.
Now we can allocate new
space for the new stack
frame by decrementing esp.
The compiler looks at the
complexity of the function
to determine how far esp
should be decremented. For
example, a function with
only a few local variables
doesn’t require too much
space on the stack, so esp
will only be decremented by
a few bytes. On the other
hand, if a function declares
a large array as a local vari-
able, esp will need to be
decremented by a lot to fit
the array on the stack.

7. Execute the func-
tion. Local variables and
any other necessary data
can now be saved in the new
stack frame. Additionally,
since ebp is always point-
ing at the top of the stack
frame, we can use it as a
point of reference to find
other variables on the stack.
For example, the arguments
will be located starting at
the address stored in ebp,
plus 8.

CS 161 Notes 12 of 39

8. Move esp up. Once
the function is ready to re-
turn, we increment esp to
point to the top of the
stack frame (ebp). This
effectively erases the stack
frame, since the stack frame
is now located below esp.
(Anything on the stack be-
low esp is undefined.)

9. Restore the old ebp
(sfp). The next value on
the stack is the sfp, the
old value of ebp before we
started executing the func-
tion. We pop the sfp
off the stack and store it
back into the ebp register.
This returns ebp to its old
value before the function
was called.

CS 161 Notes 13 of 39

10. Restore the old
eip (rip). The next value
on the stack is the rip,
the old value of eip be-
fore we started executing
the function. We pop the
rip off the stack and store
it back into the eip regis-
ter. This returns eip to its
old value before the func-
tion was called.7

11. Remove arguments
from the stack. Since
the function call is over, we
don’t need to store the ar-
guments anymore. We can
remove them by increment-
ing esp (recall that any-
thing on the stack below esp
is undefined).

You might notice that we saved the old values of eip and ebp during the function call,
but not the old value of esp. A nice consequence of this function call design is that esp
will automatically move to the bottom of the stack as we push values onto the stack and
automatically return to its old position as we remove values from the stack. As a result,
there is no need to save the old value of esp during the function call.

CS 161 Notes 14 of 39

2.9 x86 function call in assembly
Consider the following C code:

int main(void) {

foo(1, 2);

}

void foo(int a, int b) {

int bar[4];

}

The compiler would turn the foo function call into the following assembly instructions:

main:

// Step 1. Push arguments on the stack in reverse order

push $2
push $1

// Steps 2-3. Save old eip (rip) on the stack and change eip

call foo

// Execution changes to foo now. After returning from foo:

// Step 11: Remove arguments from stack

add $8, %esp

foo:

// Step 4. Push old ebp (sfp) on the stack

push %ebp

// Step 5. Move ebp down to esp

mov %esp, %ebp

// Step 6. Move esp down

sub $16, %esp

// Step 7. Execute the function (omitted here)

// Step 8. Move esp

mov %ebp, %esp

// Step 9. Restore old ebp (sfp)

pop %ebp

// Step 10. Restore old eip (rip)

pop %eip

CS 161 Notes 15 of 39

Note that steps 1-3 happen in the caller function (main). Step 3 is changing the eip to point
to the callee function (foo). Once the eip is changed, program execution is now in foo,
where steps 4-10 take place. Step 10 is changing the eip to point back to the caller function
(main). Once the eip is changed back, program execution is now in main, where step 11
takes place.

The call instruction in steps 2-3 pushes the old eip (rip) onto the stack and then changes
eip to point to the instructions for the foo function.

In step 6, esp is moved down by 16 bytes. The number 16 is determined by the compiler
depending on the function being called. In this case, the compiler decides 16 bytes are
required to fit the local variable and any other data needed for the function to execute.

This class uses AT&T x86 syntax, which means in the mov instruction, the source is the
first argument, and the destination is the second argument. For example, step 5, mov %esp,

%ebp says to take the value in esp and put it in ebp.8

Since function calls are so common, assembly programmers sometimes use shorthand to
write function returns. The two instructions in steps 8 and 9 are sometimes abbreviated as
the leave instruction, and the instruction in step 10 is sometimes abbreviated as the ret

instruction. This lets x86 programmers simply write “leave ret” after each function.

Steps 4-6 are sometimes called the function prologue, since they must appear at the start of
the assembly code of any C function. Similarly, steps 8-10 are sometimes called the function
epilogue.

8Note that if you are searching for x86 resources online, you may run into Intel syntax, where the source
and destination are reversed. Percent signs % usually mean you’re reading AT&T syntax.

CS 161 Notes 16 of 39

3 Memory Safety Vulnerabilities
3.1 Buffer overflow vulnerabilities
We’ll start our discussion of vulnerabilities with one of the most common types of errors—
buffer overflow (also called buffer overrun) vulnerabilities. Buffer overflow vulnerabilities
are a particular risk in C, and since C is an especially widely used systems programming
language, you might not be surprised to hear that buffer overflows are one of the most
pervasive kind of implementation flaws around. However, buffer overflows are not unique to
C, as C++ and Objective-C both suffer from these vulnerabilities as well.

C is a low-level language, meaning that the programmer is always exposed to the bare
machine, one of the reasons why C is such a popular systems language. Furthermore, C is also
a very old language, meaning that there are several legacy systems, which are old codebases
written in C that are still maintained and updated. A particular weakness that we will discuss
is the absence of automatic bounds-checking for array or pointer accesses. For example, if the
programmer declares an array char buffer[4], C will not automatically throw an error if
the programmer tries to access buffer[5]. It is the programmer’s responsibility to carefully
check that every memory access is in bounds. This can get difficult as your code gets more
and more complicated (e.g. for loops, user inputs, multi-threaded programs).

It is through this absence of automatic bounds-checking that buffer overflows take advantage
of. A buffer overflow bug is one where the programmer fails to perform adequate bounds
checks, triggering an out-of-bounds memory access that writes beyond the bounds of some
memory region. Attackers can use these out-of-bounds memory accesses to corrupt the
program’s intended behavior.

Let us start with a simple example.

char buf[8];

void vulnerable() {

gets(buf);

}

In this example, gets() reads as many bytes of input as the user supplies (through standard
input), and stores them into buf[]. If the input contains more than 8 bytes of data, then
gets() will write past the end of buf, overwriting some other part of memory. This is a
bug.

CS 161 Notes 17 of 39

Figure 7: Memory layout of the vulnerable code snippet. The attacker can overwrite the
shaded parts of memory.

Note that char buf[8] is defined outside of the function, so it is located in the static part of
memory. Also note that each row of the diagram represents 4 bytes, so char buf[8] takes
up 2 rows.

gets(buf) writes user input from lower addresses to higher addresses, starting at buf, and
since there is no bounds checking, the attacker can overwrite parts of memory at addresses
higher than buf.

To illustrate some of the dangers that this bug can cause, let’s slightly modify the example:

char buf[8];

int authenticated = 0;

void vulnerable() {

gets(buf);

}

Note that both char buf[8] and authenticated are defined outside of the function, so they
are both located in the static part of memory. In C, static memory is filled in the order that
variables are defined, so authenticated is at a higher address in memory than buf (since
static memory grows upward and buf was defined first, buf is at a lower memory address).

Imagine that elsewhere in the code, there is a login routine that sets the authenticated

flag only if the user proves knowledge of the password. Unfortunately, the authenticated

flag is stored in memory right after buf. Note that we use “after” here to mean “at a higher
memory address”.

CS 161 Notes 18 of 39

Figure 8: Memory layout of the vulnerable code snippet. The attacker can overwrite the
shaded parts of memory.

If the attacker can write 9 bytes of data to buf (with the 9th byte set to a non-zero value),
then this will set the authenticated flag to true, and the attacker will be able to gain access.

The program above allows that to happen, because the gets function does no bounds-
checking; it will write as much data to buf as is supplied to it by the user. In other words,
the code above is vulnerable: an attacker who can control the input to the program can
bypass the password checks.

Now consider another variation:

char buf[8];

int (*fnptr)();

void vulnerable() {

gets(buf);

}

fnptr is a function pointer. In memory, this is a 4-byte value that stores the address of a
function. In other words, calling fnptr will cause the program to dereference the pointer
and start executing instructions at that address.

Like authenticated in the previous example, fnptr is stored directly above buf in memory.

CS 161 Notes 19 of 39

Figure 9: Memory layout of the vulnerable code snippet. The attacker can overwrite the
shaded parts of memory.

Suppose the function pointer fnptr is called elsewhere in the program (not shown). This
enables a more serious attack: the attacker can overwrite fnptr with any address of their
choosing, redirecting program execution to some other memory location.

Notice that in this attack, the attacker can choose to overwrite fnptr with any address of
their choosing—so, for instance, they can choose to overwrite fnptr with an address where
some malicious machine instructions are stored. This is a malicious code injection attack.

Of course, many variations on this attack are possible: the attacker could store malicious
code anywhere in memory and redirect execution to that address.

Malicious code injection attacks allow an attacker to seize control of the program. At the
conclusion of the attack, the program is still running, but now it is executing code chosen
by the attacker, rather than the original code.

For instance, consider a web server that receives requests from clients across the network and
processes them. If the web server contains a buffer overrun in the code that processes such
requests, a malicious client would be able to seize control of the web server process. If the
web server is running as root, once the attacker seizes control, the attacker can do anything
that root can do; for instance, the attacker can leave a backdoor that allows them to log in
as root later. At that point, the system has been “owned”9.

The attacks illustrated above are only possible when the code satisfies certain special condi-
tions: the buffer that can be overflowed must be followed in memory by some security-critical
data (e.g., a function pointer, or a flag that has a critical influence on the subsequent flow of
execution of the program). Because these conditions occur only rarely in practice, attackers
have developed more effective methods of malicious code injection.

9You sometimes see variants on this like pwned, 0wned, ownzored, etc.

CS 161 Notes 20 of 39

3.2 Stack smashing
One powerful method for exploiting buffer overrun vulnerabilities takes advantage of the way
local variables are laid out on the stack.

Stack smashing attacks exploit the x86 function call convention. See Chapter 2 for a refresher
on how x86 function calls work.

Suppose the code looks like this:

void vulnerable() {

char buf[8];

gets(buf);

}

When vulnerable() is called, a stack frame is pushed onto the stack. The stack will look
something like this:

Figure 10: Memory layout of the vulnerable code snippet. The attacker can overwrite the
shaded parts of memory.

If the input is too long, the code will write past the end of buf, overwrite the sfp, and
overwrite the rip. This is a stack smashing attack.

Note that even though we are on the stack, which “grows down,” our input writes from
lower addresses to higher addresses. The stack only grows down when we call a new function
and need to allocate additional memory. When we call gets, user input is still written from
lower addresses to higher addresses, just like before.

Stack smashing can be used for malicious code injection. First, the attacker arranges to inject
a malicious code sequence somewhere in the program’s address space, at a known address
(perhaps using techniques previously mentioned). Let’s suppose some malicious code exists
at address 0xDEADBEEF.

CS 161 Notes 21 of 39

https://textbook.cs161.org/memory-safety/x86.html

Next, the attacker provides a carefully-chosen input: AAAAAAAAAAAA\xef\xbe\xad\xde.

The first part of this input is a garbage byte A repeated many times. Since the gets call
writes our user input starting at buf, we first need to overwrite all 8 bytes of buf with
garbage. Furthermore, we don’t care about the value in the sfp, so we need to overwrite the
4 bytes of the sfp with garbage. In total, we need 8 + 4 = 12 garbage bytes at the beginning
of our input.

After writing 12 garbage bytes, our next input bytes will overwrite the rip. Recall that the
rip contains the address of the next instruction that will be executed after this function
returns. If we overwrite the rip with some other address, then when the function returns,
it will start executing instructions at that address! This is very similar to the example in
the previous section, where we overwrote the function pointer with the address of malicious
code.

Since malicious code exists at address 0xDEADBEEF, the second part of our input, which
overwrites the rip, is the address 0xDEADBEEF. Note that since x86 is little-endian, we must
input the bytes in reverse order: the byte 0xEF is entered first, and the byte 0xDE is entered
last.

Figure 11: Memory layout after attacker input is entered.

Now, when the vulnerable() function returns, the program will start executing instructions
at the address in rip. Since we overwrote the rip with the address 0xDEADBEEF, the program
will start executing the malicious instructions at that address. This effectively transfers
control of the program over to the attacker’s malicious code.

Suppose the malicious code didn’t already exist in memory, and we have to inject it ourselves
during the stack smashing attack. Sometimes we call this malicious code shellcode, because
the malicious code is often written to spawn an interactive shell that lets the attacker perform
arbitrary actions.

Now suppose the shellcode we want to inject is 8 bytes long. How might we place these bytes
in memory? Our new input might look like this:

[shellcode] + [4 bytes of garbage] + [address of buf]

CS 161 Notes 22 of 39

The first part of the input places our 8-byte shellcode at the start of the buffer.

At this point, we’ve entered 8 bytes, so we’ve filled up all of buf. Our next input will
overwrite the sfp, but we want to overwrite the rip. As before, we will need to write some
garbage bytes to overwrite the sfp so that we can overwrite the rip afterwards. We need 4
bytes of garbage to overwrite the sfp.

Finally, we overwrite the rip with the address of shellcode, as before. However, this time,
the shellcode is located in the buffer, so we overwrite the rip with the address of buf. When
the function returns, it will start executing instructions at buf, which causes the shellcode
to execute.

Figure 12: Memory layout after attacker input is entered.

Now suppose our shellcode is 100 bytes long. If we try our input from before, the shellcode
won’t fit in the 12 bytes between the buffer and the rip. It turns out we can still craft an
input to exploit the program:

[12 bytes of garbage] + [address of rip + 4] + [shellcode]

In this input, we place the shellcode directly above the rip in memory. The rip is 4 bytes
long, so the address of the start of shellcode is 4 bytes greater than the address of the rip.
When the function returns, it will start executing instructions 4 bytes above the address of
the rip, where we’ve placed our shellcode.

Figure 13: Memory layout after attacker input is entered.

CS 161 Notes 23 of 39

The discussion above has barely scratched the surface of techniques for exploiting buffer
overrun bugs. Stack smashing dates back to at least the late 1980s, when the Morris Worm
exploited a buffer overflow vulnerability to infect thousands of computers. Buffer overflows
gained wider attention in 1998 with the publication of “Smashing the Stack for Fun and
Profit” by Aleph One.

Modern methods are considerably more sophisticated and powerful. These attacks may seem
esoteric, but attackers have become highly skilled at exploiting them. Indeed, you can find
tutorials on the web explaining how to deal with complications such as:

• The malicious code is stored at an unknown location.

• The buffer is stored on the heap instead of on the stack.

• The characters that can be written to the buffer are limited (e.g., to only lowercase
letters). Imagine writing a malicious sequence of instructions, where every byte in the
machine code has to be in the range 0x61 to 0x7A (’a’ to ’z’). Yes, it’s been done.

• There is no way to introduce any malicious code into the program’s address space.

Buffer overrun attacks may appear mysterious or complex or hard to exploit, but in reality,
they are none of the above. Attackers exploit these bugs all the time. For example, the Code
Red worm compromised 369,000 machines by exploiting a buffer overflow bug in the IIS web
server. In the past, many security researchers have underestimated the opportunities for
obscure and sophisticated attacks, only to later discover that the ability of attackers to find
clever ways to exploit these bugs exceeded their imaginations. Attacks once thought to be
esoteric to worry about are now considered easy and routinely mounted by attackers. The
bottom line is this: If your program has a buffer overflow bug, you should assume that the
bug is exploitable and an attacker can take control of your program.

3.3 Format string vulnerabilities
Let’s look next at another type of vulnerability:

void vulnerable() {

char buf[8];

if (fgets(buf, sizeof buf, stdin) == NULL)

return;

printf(buf);

}

Do you see the bug? The last line should be printf("%s", buf). If buf contains any %

characters, printf() will look for non-existent arguments, and may crash or core-dump the
program trying to chase missing pointers. But things can get much worse than that.

If the attacker can see what is printed, the attacker can mount several attacks:

• The attacker can learn the contents of the function’s stack frame. (Supplying the string
"%x:%x" reveals the first two words of stack memory.)

CS 161 Notes 24 of 39

https://en.wikipedia.org/wiki/Morris_worm
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

• The attacker can also learn the contents of any other part of memory, as well. (Sup-
plying the string "%s" treats the next word of stack memory as an address, and prints
the string found at that address. Supplying the string "%x:%s" treats the next word
of stack memory as an address, the word after that as an address, and prints what is
found at that string. To read the contents of memory starting at a particular address,
the attacker can find a nearby place on the stack where that address is stored, and
then supply just enough %x’s to walk to this place followed by a %s. Many clever tricks
are possible, and the details are not terribly important for our purposes.) Thus, an
attacker can exploit a format string vulnerability to learn passwords, cryptographic
keys, or other secrets stored in the victim’s address space.

• The attacker can write any value to any address in the victim’s memory. (Use %n and
many tricks; the details are beyond the scope of this writeup.) You might want to
ponder how this could be used for malicious code injection.

Let’s look at some more examples of format string vulnerabilities:

• printf("100% done!") will use the %d to print 4 bytes on the stack, 8 bytes above
the RIP of printf

• printf("100% stopped!") will use the %s to print the bytes pointed to by the address
located 8 bytes above the RIP of printf up until the first NULL byte.

The bottom line: If your program has a format string bug, assume that the attacker can learn
all secrets stored in memory, and assume that the attacker can take control of your program.

3.4 Integer conversion vulnerabilities
What’s wrong with this code?

char buf[8];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > 8) {

error("length too large: bad dog, no cookie for you!");

return;

}

memcpy(buf, p, len);

}

Here’s a hint. The function definition for memcpy() is:

void *memcpy(void *dest, const void *src, size_t n);

And the definition of size_t is:

typedef unsigned int size_t;

CS 161 Notes 25 of 39

Do you see the bug now? If the attacker provides a negative value for len, the if statement
won’t notice anything wrong, and memcpy() will be executed with a negative third argument.
C will cast this negative value to an unsigned int and it will become a very large positive
integer. Thus memcpy() will copy a huge amount of memory into buf, overflowing the buffer.

Note that the C compiler won’t warn about the type mismatch between signed int and
unsigned int; it silently inserts an implicit cast. This kind of bug can be hard to spot. The
above example is particularly nasty, because on the surface it appears that the programmer
has applied the correct bounds checks, but they are flawed.

Here is another example. What’s wrong with this code?

void vulnerable() {

size_t len;

char *buf;

len = read_int_from_network();

buf = malloc(len+5);

read(fd, buf, len);

...

}

This code seems to avoid buffer overflow problems (indeed, it allocates 5 more bytes than
necessary). But, there is a subtle problem: len+5 can wrap around if len is too large. For
instance, if len = 0xFFFFFFFF, then the value of len+5 is 4 (on 32-bit platforms). In this
case, the code allocates a 4-byte buffer and then writes a lot more than 4 bytes into it: a
classic buffer overflow. You have to know the semantics of your programming language very
well to avoid all the pitfalls.

3.5 Off-by-one vulnerabilities
Off-by-one errors are very common in programming: for example, you might accidentally
use <= instead of <, or you might accidentally start a loop at i=0 instead of i=1. As it turns
out, even an off-by-one error can lead to dangerous memory safety vulnerabilities.

Consider a buffer whose bounds checks are off by one. This means we can write n+1 bytes
into a buffer of size n, overflowing the byte immediately after the buffer (but no more than
that).

This following diagram is from Section 10 of “ASLR Smack & Laugh Reference” by Tilo
Müller. It shows how overwriting a single byte lets you start executing instructions at an
arbitrary address in memory.

CS 161 Notes 26 of 39

http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf
http://www.icir.org/matthias/cs161-sp13/aslr-bypass.pdf

Step 1: This is what normal execution during a function looks like. Consider reviewing
the x86 section of the notes if you’d like a refresher. The stack has the rip (saved eip), sfp
(saved ebp), and the local variable buff. The esp register points to the bottom of the stack.
The ebp register points to the sfp at the top of the stack. The sfp (saved ebp) points to the
ebp of the previous function, which is higher up in memory. The rip (saved eip) points to
somewhere in the code section.

Step 2: We overwrite all of buff, plus the byte immediately after buff, which is the least
significant byte of the sfp directly above buff. (Remember that x86 is little-endian, so the
least significant byte is stored at the lowest address in memory. For example, if the sfp is
0x12345678, we’d be overwriting the byte 0x78.) We can change the last byte of sfp so that
the sfp points to somewhere inside buff. The SFP label becomes FSP here to indicate that
it is now a forged sfp with the last byte changed.

Eventually, after your function finishes executing, it returns. Recall from the x86 section of
these notes that when a function returns, it executes the following 3 instructions:

mov %ebp, %esp: Change the esp register to point to wherever ebp is currently pointing.

pop %ebp: Take the next value on the stack (where esp is currently pointing, since esp always
points to the bottom of the stack), and place it in the ebp register. Move esp up by 4 to
delete this value off the stack.

pop %eip: Take the next value on the stack and place it in the eip register. Move esp up by
4 to ”delete” this value off the stack.

In normal execution, mov %ebp, %esp causes esp to point to sfp (recall that ebp always
points to sfp during function execution). pop %ebp places the next value on the stack (sfp)
inside the ebp register (in other words, you’re restoring the saved ebp back into ebp). pop

%eip places the next value on the stack (rip, just above sfp) inside the eip register (in other
words, you’re restoring the saved eip back into eip).

So now let’s see what happens if you execute these same 3 instructions when sfp incorrectly
points in the buffer.

Step 3: mov %ebp, %esp: esp now points where ebp is pointing, which is the forged sfp.

CS 161 Notes 27 of 39

Step 4: pop %ebp: Take the next value on the stack, the forged sfp, and place it in the ebp
register. Now ebp is pointing inside the buffer.

Step 5: pop %eip: Take the next value on the stack, the rip, and place it in the eip register.
Since we didn’t maliciously change the rip, the old eip is correctly restored.

After step 5, nothing has changed, except that the ebp now points inside the buffer. This
makes sense: we only changed the sfp (saved ebp), so when ebp is restored, it will point to
where the forged sfp was pointing (inside the buffer).

The key insight for this exploit is that one function return is not enough. However, eventually,
if a second function return happens, it will allow us to start executing instructions at an
arbitrary location. Let’s walk through the same 3 instructions again, but this time with ebp
incorrectly pointing in the buffer.

Step 6: mov %ebp, %esp: esp now points where ebp is pointing, which is inside the buffer.
At this point in normal execution, both ebp and esp think that they are pointing at the sfp.

Step 7: pop %ebp: Take the next value on the stack (which the program thinks is the sfp,
but is actually some attacker-controlled value inside the buffer), and place it in the ebp
register. The question mark here says that even though the attacker controls what gets
placed in the ebp register, we don’t care what the value actually is.

Step 8: pop %eip: Take the next value on the stack (which the program thinks is the
rip, but is actually some attacker-controlled value inside the buffer), and place it in the
eip register. This is where you place the address of shellcode, since you control the values
in buff, and the program is taking an address from buff and jumping there to execute
instructions.

In step 8, note that there is an offset of 4 from where the forged sfp points and where you
should place the address of shellcode. This is because the forged sfp points to a place the
program eventually tries to interpret as the sfp, but we care about the place that the program
eventually tries to interpret as the rip (which is 4 bytes higher).

Also, note that it is not enough to place the shellcode 4 bytes above where the forged sfp is
pointing. You need to put the address of shellcode there, since the program will interpret
that part of memory as the rip.

3.6 Other memory safety vulnerabilities
Buffer overflows, format string vulnerabilities, and the other examples above are examples
of memory safety bugs: cases where an attacker can read or write beyond the valid range
of memory regions. Other examples of memory safety violations include using a dangling
pointer (a pointer into a memory region that has been freed and is no longer valid) and
double-free bugs (where a dynamically allocated object is explicitly freed multiple times).

“Use after free” bugs, where an object or structure in memory is deallocated (freed) but still
used, are particularly attractive targets for exploitation. Exploiting these vulnerabilities
generally involve the attacker triggering the creation of two separate objects that, because

CS 161 Notes 28 of 39

of the use-after-free on the first object, actually share the same memory. The attacker can
now use the second object to manipulate the interpretation of the first object.

C++ vtable pointers are a classic example of a heap overflow. In C++, the programmer can
declare an object on the heap. Storing an object requires storing a vtable pointer, a pointer
to an array of pointers. Each pointer in the array contains the address of one of that object’s
methods. The object’s instance variables are stored directly above the vtable pointer.

Figure 14: Memory layout of objects on the heap in C++. The attacker can overwrite the
shaded parts of memory.

If the programmer fails to check bounds correctly, the attacker can overflow one of the
instance variables of object x. If there is another object above x in memory, like object y in
this diagram, then the attacker can overwrite that object’s vtable pointer.

The attacker can overwrite the vtable pointer with the address of another attacker-controlled
buffer somewhere in memory. In this buffer, the attacker can write the address of some
malicious code. Now, when the program calls a method on object y, it will try to look up the
address of the method’s code in y’s vtable. However, y’s vtable pointer has been overwritten
to point to attacker-controlled memory, and the attacker has written the address of some
malicious code at that memory. This causes the program to start executing the attacker’s
malicious code.

This method of injection is very similar to stack smashing, where the attacker overwrites the
rip to point to some malicious code. However, overwriting C++ vtables requires overwriting
a pointer to a pointer.

CS 161 Notes 29 of 39

4 Mitigating Memory-Safety Vulnerabilities
4.1 Use a memory-safe language
Some modern languages are designed to be intrinsically memory-safe, no matter what the
programmer does. Java, Python, Go, Rust, Swift, and many other programming languages
include a combination of compile-time and runtime checks that prevent memory errors from
occurring. Using a memory safe language is the only way to stop 100% of memory safety
vulnerabilities. In an ideal world, everyone would program in memory-safe languages and
buffer overflow vulnerabilities would no longer exist. However, because of legacy code and
perceived10 performance concerns, memory-unsafe languages such as C are still prevalent
today.

4.2 Writing memory-safe code
One way to ensure memory safety is to carefully reason about memory accesses in your
code, by defining pre-conditions and post-conditions for every function you write and using
invariants to prove that these conditions are satisfied. Although it is a good skill to have,
this process is painstakingly tedious and rarely used in practice, so it is no longer in scope
for this class. If you’d like to learn more, see this lecture from David Wagner: video, slides.

Another example of defending against memory safety vulnerabilities is writing memory-safe
code through defensive programming and using safe libraries. Defensive programming is very
similar to defining pre and post conditions for every written function, wherein you always
add checks in your code just in case something could go wrong. For example, you would
always check that a pointer is not null before dereferencing it, even if you are sure that
the pointer is always going to be valid. However, as mentioned earlier, this relies a lot on
programmer discipline and is very tedious to properly implement. As such, a more common
method is to use safe libraries, which, in turn, use functions that check bounds so you don’t
have to. For example, using fgets instead of gets, strncpy or strlcpy instead of strcpy,
and snprintf instead of sprintf, are all steps towards making your code slightly more safe.

4.3 Building secure software
Yet another way to defend your code is to use tools to analyze and patch insecure code.
Utilizing run-time checks that do automatic bound-checking, for example is an excellent way
to help your code stay safe. If your check fails, you can direct it towards a controlled crash,
ensuring that the attacker does not succeed. Hiring someone to look over your code for
memory safety errors, though expensive, can prove to be extremely beneficial as well. You
can also probe your own system for vulnerabilities, by subjecting your code to thorough
tests. Fuzz testing, or testing with random inputs, testing corner cases, and using tools like
Valgrind (to detect memory leaks), are all excellent ways to help test your code. Though

10The one real performance advantage C has over a garbage collected language like Go is a far more
deterministic behavior for memory allocation. But with languages like Rust, which are safe but not garbage
collected, this is no longer an advantage for C.

CS 161 Notes 30 of 39

https://www.youtube.com/watch?v=d8UGf6aWiQI
https://su20.cs161.org/lectures/4/lec04_optional.pdf

it is pretty difficult to know whether you have tested your code ”enough” to deem it safe,
there are several code-coverage tools that can help you out.

4.4 Exploit mitigations
Sometimes you might be forced to program in a memory-unsafe language, and you cannot
reason about every memory access in your code. For example, you might be asked to update
an existing C codebase that is so large that you cannot go through and reason about every
memory access. In these situations, a good strategy is to compile and run code with code
hardening defenses to make common exploits more difficult.

Code hardening defenses are mitigations : they try to make common exploits harder and
cause exploits to crash instead of succeeding, but they are not foolproof. The only way
to prevent all memory safety exploits is to use a memory-safe language. Instead, these
mitigations are best thought of as defense-in-depth: they cannot prevent all attacks, but
by including many different defenses in your code, you can prevent more attacks. Over the
years, there has been a back-and-forth arms race between security researchers developing
new defenses and attackers developing new ways to subvert those defenses.

The rest of this section goes into more detail about some commonly-used code hardening
defenses, and techniques for subverting those defenses. In many cases, using multiple mit-
igations produces a synergistic effect: one mitigation on its own can be bypassed, but a
combination of multiple mitigations forces an attacker to discover multiple vulnerabilities in
the target program.

4.5 Mitigation: Non-executable pages
Many common buffer overflow exploits involve the attacker writing some machine code into
memory, and then redirecting the program to execute that injected code. For example,
one of the stack smashing attacks in the previous section ([shellcode] + [4 bytes of

garbage] + [address of buf]) involves the attacker writing machine code into memory
and overwriting the rip to cause the program to execute that code.

One way to defend against this category of attacks is to make some portions of memory
non-executable. What this means is that the computer should not interpret any data in
these regions as CPU instructions. You can also think of it as not allowing the eip to ever
contain the address of a non-executable part of memory.

Modern systems separate memory into pages in order to support virtual memory (see 61C
or 162 to learn more). To defend against memory safety exploits, each page of memory is set
to either be writable or executable, but not both. If the user can write to a page in memory,
then that page of memory cannot be interpreted as machine instructions. If the program
can execute a page of memory as machine instructions, then the user cannot write to that
page.

This defense stops the stack smashing attack in the previous section where the attacker wrote
machine code into memory. Because the attacker wrote machine code to a page in memory,

CS 161 Notes 31 of 39

that page cannot be executed as machine instructions, so the attack no longer works.

This defense has several names in practice, including WˆX (Write XOR Execute), DEP
(Data Execution Prevention), and the NX bit (no-execute bit).

4.6 Subverting non-executable pages: Return into libc
Non-executable pages do not stop an attacker from executing existing code in memory. Most
C programs import libraries with thousands or even million lines of instructions. All of these
instructions are marked as executable (and non-writable), since the programmer may want
to call these functions legitimately.

An attacker can exploit this by overwriting the rip with the address of a C library function.
For example, the execv function lets the attacker start executing the instructions of some
other executable.

Some of these library functions may take arguments. For example, execv takes a string with
the filename of the program to execute. Recall that in x86, arguments are passed on the
stack. This means that an attacker can carefully place the desired arguments to the library
function in the right place on the stack, so that when the library function starts to execute,
it will look on the stack for arguments and find the malicious argument placed there by the
attacker. The argument is not being run as code, so non-executable pages will not stop this
attack.

4.7 Subverting non-executable pages: Return-oriented programming
We can take this idea of returning to already-loaded code and extend it further to now
execute arbitrary code. Return-oriented programming is a technique that overwrites a chain
of return addresses starting at the RIP in order to execute a series of “ROP gadgets” which
are equivalent to the desired malicious code. Essentially, we are constructing a custom
shellcode using pieces of code that already exist in memory. Instead of executing an existing
function, like we did in “Return to libc”, with ROP you can execute your own code by simply
executing different pieces of different code. For example, imagine we want to add 4 to the
value currently in the EDX register as part of a larger program. In loaded memory, we have
the following functions:

foo:

...

0x4005a1 <foo+33> mov %edx, %eax

0x4005a3 <foo+35> leave

0x4005a4 <foo+36> ret

...

bar:

...

0x400604 <bar+20> add $0x4, %eax

0x400608 <bar+24> pop %ebx

0x40060a <bar+26> leave

CS 161 Notes 32 of 39

0x40060b <bar+27> ret

To emulate the add $0x4, %edx instruction, we could move the value in EDX to EAX using
the gadget in foo and then add 4 to EAX using the gadget in bar! If we set the first return
address to 0x004005a1 and the second return address to 0x00400604, we produce the desired
result. Each time we jump to ROP gadget, we eventually execute the ‘ret‘ instruction and
then pop the next return address off the stack, jumping to the next gadget. We just have
to keep track that our desired value is now in a different register, and because we execute
a pop %ebx instruction in ‘bar‘ before we return, we also have to remember that the value
in EBX has been updated after executing these gadgets—but these are all behaviors that
we can account for using standard compiler techniques. In fact, so-called “ROP compilers”
exist to take an existing vulnerable program and a desired execution flow and generate a
series of return addresses.

The general strategy for executing ROPs is to write a chain of return addresses at the RIP
to achieve the behavior that we want. Each return address should point to a gadget, which
is a small set of assembly instructions that already exist in memory and usually end in a ret

instruction (note that gadgets are not functions, they don’t need to start with a prologue
or end with an epilogue!). The gadget then executes its instructions and ends with a ret

instruction, which tells the code to jump to the next address on the stack, thus allowing us
to jump to the next gadget!

If the code base is big enough, meaning that the code imports enough libraries, there are
usually enough gadgets in memory for you to be able to run any shellcode that you want.
In fact, ROP compilers exist on the Internet that will automatically generate an ROP chain
for you based on a target binary and desired malicious code! ROP has become so common
that non-executable pages are no longer a huge issue for attackers nowadays; while having
writable and executable pages makes an attacker’s life easier, not a lot of effort has to be
put in to subvert this defense mechanism.

4.8 Mitigation: Stack canaries
In the old days, miners would protect themselves against toxic gas buildup in the mine by
bringing a caged canary into the mine. These particularly noisy birds are also sensitive to
toxic gas. If toxic gas builds up in the mine, the canary dies first, which gives the miners a
warning sign that the air is toxic and they should evacuate immediately. The canary in the
coal mine is a sacrificial animal: the miners don’t expect it to survive, but its death acts as
a warning to save the lives of the miners.

We can use this same idea to prevent against buffer overflow attacks. When we call a
function, the compiler places a known dummy value, the stack canary, on the stack. This
canary value is not used by the function at all, so it should stay unchanged throughout the
duration of the function. When the function returns, the compiler checks that the canary
value has not been changed. If the canary value has changed, then just like the canary in
the mine dying, this is evidence that something bad has happened, and the program will
crash before any further damage is done.

CS 161 Notes 33 of 39

Like the canary in the coal mine, the stack canary is a sacrifical value: it has no purpose in
the function execution and nothing bad happens if it is changed, but the canary changing
acts as a warning that someone may be trying to exploit our program. This warning lets us
safely crash the program instead of allowing the exploit to succeed.

The stack canary uses the fact that many common stack smashing attacks involve overflowing
a local variable to overwrite the saved registers (sfp and rip) directly above. These attacks
often write to consecutive, increasing addresses in memory, without any gaps. In other
words, if the attacker starts writing at a buffer and wants to overwrite the rip, they must
overwrite everything in between the buffer and the rip.

The stack canary is placed directly above the local variables and directly below the saved
registers (sfp and rip):

Figure 15: The location of the stack canary on the stack.

Suppose an attacker wants to overflow a local variable to overwrite the rip on the stack,
and the vulnerability only allows the attacker to write to consecutive, increasing addresses
in memory. Then the attacker must overwrite the stack canary before overwriting the rip,
since the rip is located above the buffer in the stack.

Before the function returns and starts executing instructions at the rip, the compiler will
check whether the canary value is unchanged. If the attacker has attempted to overwrite the
rip, they will have also changed the canary value. The program will conclude that something
bad is happening and crash before the attacker can take control. Note that the stack canary
detects an attack before the function returns.

The stack canary is a random value generated at runtime. The canary is 1 word long, so it
is 32 bits long in 32-bit architectures. In Project 1, the canary is 32 completely random bits.
However, in reality, stack canaries are usually guaranteed to contain a null byte (usually as
the first byte). This lets the canary defend against string-based memory safety exploits, such
as vulnerable calls to strcpy that read or write values from the stack until they encounter
a null byte. The null byte in the canary stops the strcpy call before it can copy past the

CS 161 Notes 34 of 39

canary and affect the rip.

The canary value changes each time the program is run. If the canary was the same value
each time the program was run, then the attacker could run the program once, write down
the canary value, then run the program again and overwrite the canary with the correct
value. Within a single run of the program, the canary value is usually the same for each
function on the stack.

Modern compilers automatically add stack canary checking when compiling C code. The
performance overhead from checking stack canaries is negligible, and they defend against
many of the most common exploits, so there is really no reason not to include stack canaries
when programming in a memory-unsafe language.

4.9 Subverting stack canaries
Stack canaries make buffer overflow attacks harder for an attacker, but they do not defend
programs against all buffer overflow attacks. There are many exploits that the stack canary
cannot detect:

• Stack canaries can’t defend against attacks outside of the stack. For example, stack
canaries do nothing to protect vulnerable heap memory.

• Stack canaries don’t stop an attacker from overwriting other local variables. Consider
the authenticated example from the previous section. An attacker overflowing a
buffer to overwrite the authenticated variable never actually changes the canary
value.

• Some exploits can write to non-consecutive parts of memory. For example, format
string vulnerabilities let an attacker write directly to the rip without having to overwrite
everything between a local variable and the rip. This lets the attacker write ”around”
the canary and overwrite the rip without changing the value of the canary.

Additionally, there are several techniques for defeating the stack canary. These usually
involve the attacker modifying their exploit to overwrite the canary with its original value.
When the program returns, it will see that the canary is unchanged, and the program won’t
detect the exploit.

Guess the canary: On a 32-bit architecture, the stack canary usually only has 24 bits of
entropy (randomness), because one of the four bytes is always a null byte. If the attacker
runs the program with an exploit, there is a roughly 1 in 224 chance that the the value
the attacker is overwriting the canary with matches the actual canary value. Although the
probability of success is low on one try, the attacker can simply run the program 224 times
and successfully exploit the program at least once with high probability.

Depending on the setting, it may be easy or hard to run a program and inject an exploit 224

times. If each try takes 1 second, the attacker would need to try for over 100 days before
they succeed. If the program is configured to take exponentially longer to run each time the
attacker crashes it, the attacker might never be able to try enough times to succeed. However,

CS 161 Notes 35 of 39

if the attacker can try thousands of times per second, then the attacker will probably succeed
in just a few hours.

On a 64-bit architecture, the stack canary has 56 bits of randomness, so it is significantly
harder to guess the canary value. Even at 1,000 tries per second, an attacker would need
over 2 million years on average to guess the canary!

Leak the canary: Sometimes the program has a vulnerability that allows the attacker to
read parts of memory. For example, a format string vulnerability might let the attacker
print out values from the stack. An attacker could use this vulnerability to leak the value
of the canary, write it down, and then inject an exploit that overwrites the canary with its
leaked value. All of this can happen within a single run of the program, so the canary value
doesn’t change on program restart.

4.10 Mitigation: Pointer authentication
As we saw earlier, stack canaries help detect if an attacker has modified the rip or sfp pointers
by storing a secret value on the stack and checking if the secret value has been modified.
As it turns out, we can generalize this idea of using secrets on the stack to detect when an
attacker modifies any pointer on the stack.

Pointer authentication takes advantage of the fact that in a 64-bit architecture, many bits
of the address are unused. A 64-bit address space can support 264 bytes, or 16 exabytes
of memory, but we are a long way off from having a machine with this much memory. A
modern CPU might support a 16 terabyte address space, which means 44 bits are needed to
address all of memory. This still leaves 20 unused bits in every address and pointer.

Consider using these unused bits to store a secret like the stack canary. Any time we need
to store an address on the stack, the CPU first replaces the 20 unused bits with some secret
value before pushing the value on the stack. When the CPU reads an address off the stack,
it will check that the secret value is unchanged. If the secret is unchanged, then the CPU
replaces the secret with the original unused bits and uses the address normally. However,
if the secret has been changed, this is a warning sign that the attacker has overwritten the
address! The CPU notices this and safely crashes the program.

As an example, suppose the rip of a function in a 64-bit system is 0x00000123456789000.
The address space for this architecture is 44 bits, which means the top 20 bits (5 bytes) are
always 0 for every address. Instead of pushing this address directly on the stack, the CPU
will first replace the 5 unused bytes with a secret value. For example, if the secret value is
0xABCDE, then the address pushed on the stack is 0xABCDE123456789000.

This address (with the secret value inserted) is invalid, and dereferencing it will cause the
program to crash. When the function returns and the program needs to start executing
instructions at the rip, the CPU will read this address from the stack and check that the
secret 0xABCDE is unchanged. If the secret is correct, then the CPU replaces the secret with
the original unused bits to make the address valid again. Now the CPU can start executing
instructions at the original rip 0x00000123456789000.

CS 161 Notes 36 of 39

Now, an attacker trying to overwrite the rip would need to know the secret in order to
overwrite the rip with the address of some attacker shellcode. If the attacker overwrites the
secret with an incorrect value, the CPU will detect this and crash the program.

We can strengthen this defense even further. Since it is the CPU’s job to add and check the
secret, we can ask the CPU to use a different secret for every pointer stored on the stack.
However, we don’t want to store all these secrets on the CPU, so we’ll use some special math
to help us generate secure secrets on the fly.

Consider a special function f(KEY,ADDRESS). The function f takes a secret key KEY and
an address ADDRESS, and outputs a secret value by performing some operation on these two
inputs. This function is deterministic, which means if we supply the same key and address
twice, it will output the same secret value twice. This function is also secure: an attacker
who doesn’t know the value of KEY cannot output secret values of their own.11

Now, instead of using the same secret value for every address, we can generate a different
secret value for each address we store in memory. Every time an address needs to be stored
in memory, the CPU runs f with the secret key and the address to generate a unique secret
value. Every time an address from memory needs to be dereferenced, the CPU runs f again
with the secret key and the address to re-generate the secret value, and checks that the
generated value matches the value in memory. The CPU only has to remember the secret
key, because all the secret values can be re-generated by running f again with the key and
the address.

Using a different secret value for every address makes this defense extremely strong. An
attacker who can write to random parts of memory can defeat the stack canary, but cannot
easily defeat pointer authentication: they could try to leave the secret value untouched, but
because they’ve changed the address, the old secret value will no longer check out. The
CPU will run f on the attacker-generated address, and the output will be different from the
old secret value (which was generated by running f on the original address). The attacker
also cannot generate the correct secret value for their malicious address, because they don’t
know what the secret key is. Finally, an attacker could try to leak some addresses and secret
values from memory, but knowing the secret values doesn’t help the attacker generate a valid
secret value for their chosen malicious address.

With pointer authentication enabled, an attacker is never able to overwrite pointers on
the stack (including the rip) without generating the corresponding secret for the attacker’s
malicious address. Without knowing the key, the attacker is forced to guess the correct secret
value for their address. For a 20-bit secret, the attacker has a 1 in 220 chance of success.

Another way to subvert pointer authentication is to find a separate vulnerability in the
program that allows the attacker to trick the program into creating a validated pointer. The
attacker could also try to discover the secret key stored in the CPU, or find a way to subvert
the function f used to generate the secret values.

11This function is called a MAC (message authentication code), and we will study it in more detail in the
cryptography unit.

CS 161 Notes 37 of 39

4.11 Mitigation: Address Space Layout Randomization (ASLR)
Recall the stack smashing attacks from the previous section, where we overwrote the rip with
the address of some malicious code in memory. This required knowing the exact address of
the start of the malicious code. ASLR is a mitigation that tries to make predicting addresses
in memory more difficult.

Although we showed that C memory is traditionally arranged with the code section starting
at the lowest address and the stack section starting at the highest address, nothing is stopping
us from shifting or rearranging the memory layout. With ASLR, each time the program is
run, the beginning of each section of memory is randomly chosen. Also, if the program
imports libraries, we can also randomize the starting addresses of each library’s source code.

ASLR causes the absolute addresses of variables, saved registers (sfp and rip), and code
instructions to be different each time the program is run. This means the attacker can no
longer overwrite some part of memory (such as the rip) with a constant address. Instead, the
attacker has to guess the address of their malicious instructions. Since ASLR can shuffle all
four segments of memory, theoretically, certain attacks can be mitigated. By randomizing
the stack, the attacker cannot place shellcode on the stack without knowing the address
of the stack. By randomizing the heap, the attacker, similarly, cannot place shellcode on
the heap without knowing the address of the heap. Finally, by randomizing the code, the
attacker cannot construct an ROP chain or a return-to-libc attack without knowing the
address of the code.

There are some constraints to randomizing the sections of memory. For example, segments
usually need to start at a page boundary. In other words, the starting address of each
section of memory needs to be a multiple of the page size (typically 4096 bytes in a 32-bit
architecture).

Modern systems can usually implement ASLR with minimal overhead because they dynam-
ically link libraries at runtime, which requires each segment of memory to be relocatable.

4.12 Subverting ASLR
The two main ways to subvert ASLR are similar to the main ways to subvert the stack
canary: guess the address, or leak the address.

Guess the address: Because of the constraints on address randomization, a 32-bit system
will sometimes only have around 16 bits of entropy for address randomization. In other
words, the attacker can guess the correct address with a 1 in 216 probability, or the attacker
can try the exploit 216 times and expect to succeed at least once. This is less of a problem
on 64-bit systems, which have more entropy available for address randomization.

Like guessing the stack canary, the feasibility of guessing addresses in ASLR depends on
the attack setting. For example, if each try takes 1 second, then the attacker can make 216

attempts in less than a day. However, if each try after a crash takes exponentially longer,
216 attempts may become infeasible.

CS 161 Notes 38 of 39

Leak the address: Sometimes the program has a vulnerability that allows the attacker
to read parts of memory. For example, a format string vulnerability might let the attacker
print out values from the stack. The stack often stores absolute addresses, such as pointers
and saved registers (sfp and rip). If the attacker can leak an absolute address, they may
be able to determine the absolute address of other parts of memory relative to the absolute
address they leaked.

Note that ASLR randomizes absolute addresses by changing the start of sections of memory,
but it does not randomize the relative addresses of variables. For example, even if ASLR is
enabled, the rip will still be 4 bytes above the sfp in a function stack frame. This means
that an attacker who leaks the absolute address of the sfp could deduce the address of the
rip (and possibly other values on the stack).

4.13 Combining Mitigations
We can use multiple mitigations together to force the attacker to find multiple vulnerabilities
to exploit the program; this is a process known as synergistic protection, where one mitigation
helps strengthen another mitigation. For example, combining ASLR and non-executable
pages results in an attacker not being able to write their own shellcode, because of non-
executable pages, and not being able to use existing code in memory, because they don’t
know the addresses of that code (ASLR). Thus, to defeat ASLR and non-executable pages,
the attacker needs to find two vulnerabilities. First, they need to find a way to leak memory
and reveal the address location (to defeat ASLR). Next, they need to find a way to write to
memory and write an ROP chain (to defeat non-executable pages).

CS 161 Notes 39 of 39

	x86 Assembly and Call Stack
	Number representation
	Compiler, Assembler, Linker, Loader (CALL)
	C memory layout
	Little-endian words
	Registers
	Stack: Pushing and popping
	x86 calling convention
	x86 function calls
	x86 function call in assembly

	Memory Safety Vulnerabilities
	Buffer overflow vulnerabilities
	Stack smashing
	Format string vulnerabilities
	Integer conversion vulnerabilities
	Off-by-one vulnerabilities
	Other memory safety vulnerabilities

	Mitigating Memory-Safety Vulnerabilities
	Use a memory-safe language
	Writing memory-safe code
	Building secure software
	Exploit mitigations
	Mitigation: Non-executable pages
	Subverting non-executable pages: Return into libc
	Subverting non-executable pages: Return-oriented programming
	Mitigation: Stack canaries
	Subverting stack canaries
	Mitigation: Pointer authentication
	Mitigation: Address Space Layout Randomization (ASLR)
	Subverting ASLR
	Combining Mitigations

