
Cryptography
CS 161

Computer Security Textbook

An online version is available at https://textbook.cs161.org.

Textbook by David Wagner, Nicholas Weaver, Peyrin Kao,
Fuzail Shakir, Andrew Law, and Nicholas Ngai

Additional contributions by Noura Alomar, Sheqi Zhang, and Shomil Jain

Last update: August 26, 2021

Contact for corrections: cs161-staff@berkeley.edu

In this unit, we’ll be studying cryptography, techniques for securing information and com-
munication in the presence of an attacker. In particular, we will see how we can prevent
adversaries from reading or altering our private data. In a nutshell, cryptography is about
communicating securely over insecure communication channels.

The ideas we’ll examine have significant grounding in mathematics, and in general constitute
the most systematic and formal set of approaches to security that we’ll cover.

5 Introduction to Cryptography
5.1 Disclaimer: Don’t try this at home!
In this class, we will teach you the basic building blocks of cryptography, and in particular,
just enough to get a feeling for how they work at a conceptual level. Understanding cryp-
tography at a conceptual level will give you good intuition for how industrial systems use
cryptography in practice.

However, cryptography in practice is very tricky to get right. Actual real-world cryptographic
implementations require great attention to detail and have hundreds of possible pitfalls. For
example, private information might leak out through various side-channels, random number
generators might go wrong, and cryptographic primitives might lose all security if you use
them the wrong way. We won’t have time to teach all of those details and pitfalls to you
in CS 161, so you should never implement your own cryptography using the algorithms we
teach you in this class.

Instead, the cryptography we show you in this class is as much about educating you as
a consumer as educating you as an engineer. If you find yourself needing an encrypted
connection between two computers, or if you need to send an encrypted message to another
person, you should use existing well-vetted cryptographic tools. However, you will often
be faced with the problem of understanding how something is supposed to work. You
might also be asked to evaluate the difference between alternatives. For that, you will

CS 161 Notes 1 of 79

https://textbook.cs161.org
https://people.eecs.berkeley.edu/~daw/
https://www1.icsi.berkeley.edu/~nweaver
https://peyrin.github.io
https://ngai.me
https://shomil.me

need to understand the underlying cryptographic engineering involved. Similarly, there are
sometimes applications that take advantage of cryptographic primitives in non-cryptographic
ways, so it is useful to know the primitives. You never know when you might need a hash, an
HMAC, or a block cipher for a non-security task that takes advantage of their randomness
properties.

In summary, know that we’re going to teach you just enough cryptography to be dangerous,
but not enough to implement industrial-strength cryptography in practice.

5.2 Brief History of Cryptography
The word “cryptography” comes from the Latin roots crypt, meaning secret, and graphia,
meaning writing. So cryptography is quite literally the study of how to write secret messages.

Schemes for sending secret messages go back to antiquity. 2,000 years ago, Julius Caesar
employed what’s today referred to as the “Caesar cypher,” which consists of permuting the
alphabet by shifting each letter forward by a fixed amount. For example, if Caesar used
a shift by 3 then the message “cryptography” would be encoded as “fubswrjudskb”. With
the development of the telegraph (electronic communication) during the 1800s, the need for
encryption in military and diplomatic communications became particularly important. The
codes used during this “pen and ink” period were relatively simple since messages had to be
decoded by hand. The codes were also not very secure, by modern standards.

The second phase of cryptography, the “mechanical era,” was the result of a German project
to create a mechanical device for encrypting messages in an unbreakable code. The resulting
Enigma machine was a remarkable feat of engineering. Even more remarkable was the
massive British effort during World War II to break the code. The British success in breaking
the Enigma code helped influence the course of the war, shortening it by about a year,
according to most experts. There were three important factors in the breaking of the Enigma
code. First, the British managed to obtain a replica of a working Enigma machine from
Poland, which had cracked a simpler version of the code. Second, the Allies drew upon a great
deal of brainpower, first with the Poles, who employed a large contingent of mathematicians
to crack the structure, and then from the British, whose project included Alan Turing, one
of the founding fathers of computer science. The third factor was the sheer scale of the
code-breaking effort. The Germans figured that the Enigma was well-nigh uncrackable, but
what they didn’t figure on was the unprecedented level of commitment the British poured
into breaking it, once codebreakers made enough initial progress to show the potential for
success. At its peak, the British codebreaking organization employed over 10,000 people,
a level of effort that vastly exceeded anything the Germans had anticipated. They also
developed electromechanical systems that could, in parallel, search an incredible number of
possible keys until the right one was found.

Modern cryptography is distinguished by its reliance on mathematics and electronic com-
puters. It has its early roots in the work of Claude Shannon following World War II. The
analysis of the one-time pad (discussed in the next chapter) is due to Shannon. The early
1970s saw the introduction of a standardized cryptosystem, DES, by the National Institute
for Standards in Technology (NIST). DES answered the growing need for digital encryption

CS 161 Notes 2 of 79

standards in banking and other businesses. The decade starting in the late 1970s then saw
an explosion of work on a computational theory of cryptography.

5.3 Definitions
Intuitively, we can see that the Caesar cypher is not secure (try all 26 possible shifts and
you’ll get the original message back), but how can we prove that it is, in fact, insecure? To
formally study cryptography, we will have to define a mathematically rigorous framework
that lets us analyze the security of various cryptographic schemes.

The rest of this section defines some important terms that will appear throughout the unit.

5.4 Definitions: Alice, Bob, Eve, and Mallory
The most basic problem in cryptography is one of ensuring the security of communications
across an insecure medium. Two recurring members of the cast of characters in cryptography
are Alice and Bob, who wish to communicate securely as though they were in the same room
or were provided with a dedicated, untappable line. However, they only have available a
telephone line or an Internet connection subject to tapping by an eavesdropping adversary,
Eve. In some settings, Eve may be replaced by an active adversary, Mallory, who can tamper
with communications in addition to eavesdropping on them.

The goal is to design a scheme for scrambling the messages between Alice and Bob in such
a way that Eve has no clue about the contents of their exchange, and Mallory is unable to
tamper with the contents of their exchange without being detected. In other words, we wish
to simulate the ideal communication channel using only the available insecure channel.

5.5 Definitions: Keys
The most basic building block of any cryptographic system (or cryptosystem) is the key.
The key is a secret value that helps us secure messages. Many cryptographic algorithms and
functions require a key as input to lock or unlock some secret value.

There are two main key models in modern cryptography. In the symmetric key model, Alice
and Bob both know the value of a secret key, and must secure their communications using
this shared secret value. In the asymmetric key model, each person has a secret key and a
corresponding public key. You might remember RSA encryption from CS 70, which is an
asymmetric-key encryption scheme.

5.6 Definitions: Confidentiality, Integrity, Authenticity
In cryptography, there are three main security properties that we want to achieve.

Confidentiality is the property that prevents adversaries from reading our private data. If a
message is confidential, then an attacker does not know its contents. You can think about
confidentiality like locking and unlocking a message in a lockbox. Alice uses a key to lock the
message in a box and then sends the message (in the locked box) over the insecure channel

CS 161 Notes 3 of 79

to Bob. Eve can see the locked box, but cannot access the message inside since she does not
have a key to open the box. When Bob receives the box, he is able to unlock it using the
key and retrieve the message.

Most cryptographic algorithms that guarantee confidentiality work as follows: Alice uses a
key to encrypt a message by changing it into a scrambled form that the attacker cannot
read. She then sends this encrypted message over the insecure channel to Bob. When Bob
receives the encrypted message, he uses the key to decrypt the message by changing it back
into its original form. We sometimes call the message plaintext when it is unencrypted and
ciphertext when it is encrypted. Even if the attacker can see the encrypted ciphertext, they
should not be able to decrypt it back into the corresponding plaintext–only the intended
recipient, Bob, should be able to decrypt the message.

Integrity is the property that prevents adversaries from tampering with our private data. If
a message has integrity, then an attacker cannot change its contents without being detected.

Authenticity is the property that lets us determine who created a given message. If a message
has authenticity, then we can be sure that the message was written by the person who claims
to have written it.

You might be thinking that authenticity and integrity seem very closely related, and you
would be correct; it makes sense that before you can prove that a message came from a
particular person, you first have to prove that the message was not changed. In other words,
before you can prove authenticity, you first have to be able to prove integrity. However, these
are not identical properties and we will take a look at some edge cases as we delve further
into the cryptographic unit.

You can think about cryptographic algorithms that ensure integrity and authenticity as
adding a seal on the message that is being sent. Alice uses the key to add a special seal,
like a piece of tape on the envelope, on the message. She then sends the sealed message over
the unsecure channel. If Mallory tampers with the message, she will break the tape on the
envelope, and therefore break the seal. Without the key, Mallory cannot create her own seal.
When Bob receives the message, he checks that the seal is untampered before unsealing the
envelope and revealing the message.

Most cryptographic algorithms that guarantee integrity and authenticity work as follows:
Alice generates a tag or a signature on a message. She sends the message with the tag to
Bob. When Bob receives the message and the tag, he verifies that the tag is valid for the
message that was sent. If the attacker modifies the message, the tag should no longer be
valid, and Bob’s verification will fail. This will let Bob detect if the message has been altered
and is no longer the original message from Alice. The attacker should not be able to generate
valid tags for their malicious messages.

A related property that we may want our cryptosystem to have is deniability. If Alice and
Bob communicate securely, Alice might want to publish a message from Bob and show it to
a judge, claiming that it came from Bob. If the cryptosystem has deniability, there is no
cryptographic proof available to guarantee that Alice’s published message came from Bob.
For example, consider a case where Alice and Bob use the same key to generate a signature

CS 161 Notes 4 of 79

on a message, and Alice publishes a message with a valid signature. Then the judge cannot
be sure that the message came from Bob–the signature could have plausibly been created
by Alice.

5.7 Overview of schemes
We will look at cryptographic primitives that provide confidentiality, integrity, and authen-
tication in both the symmetric-key and asymmetric-key settings.

Symmetric-key Asymmetric-key

Confidentiality Block ciphers with chaining
modes
(e.g., AES-CBC)

Public-key encryption
(e.g., El Gamal, RSA encryption)

Integrity and
authentication

MACs
(e.g., HMAC)

Digital signatures
(e.g., RSA signatures)

In symmetric-key encryption, Alice uses her secret key to encrypt a message, and Bob uses
the same secret key to decrypt the message.

In public-key encryption, Bob generates a matching public key and private key, and shares
the public key with Alice (but does not share his private key with anyone). Alice can encrypt
her message under Bob’s public key, and then Bob will be able to decrypt using his private
key. If these schemes are secure, then no one except Alice and Bob should be able to learn
anything about the message Alice is sending.

In the symmetric-key setting, message authentication codes (MACs) provide integrity and
authenticity. Alice uses the shared secret key to generate a MAC on her message, and Bob
uses the same secret key to verify the MAC. If the MAC is valid, then Bob can be confident
that no attacker modified the message, and the message actually came from Alice.

In the asymmetric-key setting, public-key signatures (also known as digital signatures) pro-
vide integrity and authenticity. Alice generates a matching public key and private key, and
shares the public key with Bob (but does not share her private key with anyone). Alice
computes a digital signature of her message using her private key, and appends the signature
to her message. When Bob receives the message and its signature, he will be able to use
Alice’s public key to verify that no one has tampered with or modified the message, and that
the message actually came from Alice.

We will also look at several other cryptographic primitives. These primitives don’t guarantee
confidentiality, integrity, or authenticity by themselves, but they have desirable properties
that will help us build secure cryptosystems. These primitives also have some useful appli-
cations unrelated to cryptography.

• Cryptographic hashes provide a one way digest: They enable someone to condense a
long message into a short sequence of what appear to be random bits. Cryptographic
hashes are irreversible, so you can’t go from the resulting hash back to the original
message but you can quickly verify that a message has a given hash.

CS 161 Notes 5 of 79

• Many cryptographic systems and problems need a lot of random bits. To generate these
we use a pseudo random number generator, a process which takes a small amount of
true randomness and stretches it into a long sequence that should be indistinguishable
from actual random data.

• Key exchange schemes (e.g. Diffie-Hellman key exchange) allow Alice and Bob to use
an insecure communication channel to agree on a shared random secret key that is
subsequently used for symmetric-key encryption.

5.8 Definitions: Kerckhoff’s Principle
Let’s now examine the threat model, which in this setting involves answering the question:
How powerful are the attackers Eve and Mallory?

To consider this question, recall Kerckhoff’s principle from the earlier notes about security
principles:

Cryptosystems should remain secure even when the attacker knows all internal
details of the system. The key should be the only thing that must be kept secret,
and the system should be designed to make it easy to change keys that are leaked
(or suspected to be leaked). If your secrets are leaked, it is usually a lot easier
to change the key than to replace every instance of the running software. (This
principle is closely related to Shannon’s Maxim: Don’t rely on security through
obscurity.)

Consistent with Kerckhoff’s principle, we will assume that the attacker knows the encryption
and decryption algorithms.1 The only information the attacker is missing is the secret key(s).

5.9 Definitions: Threat models
When analyzing the confidentiality of an encryption scheme, there are several possibilities
about how much access an eavesdropping attacker Eve has to the insecure channel:

1. Eve has managed to intercept a single encrypted message and wishes to recover the
plaintext (the original message). This is known as a ciphertext-only attack.

2. Eve has intercepted an encrypted message and also already has some partial infor-
mation about the plaintext, which helps with deducing the nature of the encryption.
This case is a known plaintext attack. In this case Eve’s knowledge of the plaintext is
partial, but often we instead consider complete knowledge of one instance of plaintext.

3. Eve can capture an encrypted message from Alice to Bob and re-send the encrypted
message to Bob again. This is known as a replay attack. For example, Eve captures
the encryption of the message “Hey Bob’s Automatic Payment System: pay Eve $100”
and sends it repeatedly to Bob so Eve gets paid multiple times. Eve might not know

1The story of the Enigma gives one possible justification for this assumption: given how widely the
Enigma was used, it was inevitable that sooner or later the Allies would get their hands on an Enigma
machine, and indeed they did.

CS 161 Notes 6 of 79

the decryption of the message, but she can still send the encryption repeatedly to carry
out the attack.

4. Eve can trick Alice to encrypt arbitrary messages of Eve’s choice, for which Eve can
then observe the resulting ciphertexts. (This might happen if Eve has access to the
encryption system, or can generate external events that will lead Alice to sending
predictable messages in response.) At some other point in time, Alice encrypts a
message that is unknown to Eve; Eve intercepts the encryption of Alice’s message and
aims to recover the message given what Eve has observed about previous encryptions.
This case is known as a chosen-plaintext attack.

5. Eve can trick Bob into decrypting some ciphertexts. Eve would like to use this to learn
the decryption of some other ciphertext (different from the ciphertexts Eve tricked Bob
into decrypting). This case is known as a chosen-ciphertext attack.

6. A combination of the previous two cases: Eve can trick Alice into encrypting some
messages of Eve’s choosing, and can trick Bob into decrypting some ciphertexts of
Eve’s choosing. Eve would like to learn the decryption of some other ciphertext that
was sent by Alice. (To avoid making this case trivial, Eve is not allowed to trick
Bob into decrypting the ciphertext sent by Alice.) This case is known as a chosen-
plaintext/ciphertext attack, and is the most serious threat model.

Today, we usually insist that our encryption algorithms provide security against chosen-
plaintext/ciphertext attacks, both because those attacks are practical in some settings, and
because it is in fact feasible to provide good security even against this very powerful attack
model.

However, for simplicity, this class will focus primarily on security against chosen-plaintext
attacks.

CS 161 Notes 7 of 79

6 Symmetric-Key Encryption
In this section, we will build symmetric-key encryption schemes that guarantee confidential-
ity. Because we are in the symmetric key setting, in this section we can assume that Alice
and Bob share a secret key that is not known to anyone else. Later we will see how Alice and
Bob might securely exchange a shared secret key over an insecure communication channel,
but for now you can assume that only Alice and Bob know the value of the secret key.

For modern schemes, we are going to assume that all messages are bitstrings, which is a
sequence of bits, 0 or 1 (e.g. 1101100101010101). Text, images, and most other forms of
communication can usually be converted into bitstrings before encryption, so this is a useful
abstraction.

6.1 IND-CPA Security
In the previous section, we defined confidentiality to mean that an attacker cannot read
our messages. Recall from the previous chapter that confidentiality was defined to mean
that an attacker cannot read our messages. This definition, while intuitive, is quite open-
ended. If the attacker can read the first half of our message but not the second half, is that
confidential? What if the attacker can deduce that our message starts with the words “Dear
Bob?” It might also be the case that the attacker had some partial information about the
message M to begin with. Perhaps she knew that the last bit of M is a 0, or that 90% of
the bits of M are 1’s, or that M is one of BUY! or SELL but does not know which.

A more formal, rigorous definition of confidentiality is: the ciphertext C should give the
attacker no additional information about the message M . In other words, the attacker
should not learn any new information about M beyond what they already knew before
seeing C (seeing C should not give the attacker any new information).

We can further formalize this definition by designing an experiment to test whether the
attacker has learned any additional information. Consider the following experiment: Alice
has encrypted and sent one of two messages, either M0 or M1, and the attacker Eve has no
idea which was sent. Eve tries to guess which was sent by looking at the ciphertext. If the
encryption scheme is confidential, then Eve’s probability of guessing which message was sent
should be 1/2, which is the same probability as if she had not intercepted the ciphertext at
all, and was instead guessing at random.

We can adapt this experiment to different threat models by allowing Eve to perform further
actions as an attacker. For example, Eve might be allowed to trick Alice into encrypting
some messages of Eve’s choosing. Eve might also be allowed to trick Alice into decrypting
some ciphertexts of Eve’s choosing. In this class, we will be focusing on the chosen-plaintext
attack model, which means Eve can trick Alice into encrypting some messages, but she
cannot trick Alice into decrypting some messages.

In summary, our definition of confidentiality says that even if Eve can trick Alice into en-
crypting some messages, she still cannot distinguish whether Alice sent M0 or M1 in the
experiment. This definition is known as indistinguishability under chosen plaintext attack,

CS 161 Notes 8 of 79

or IND-CPA. We can use an experiment or game, played between the adversary Eve and
the challenger Alice, to formally prove that a given encryption scheme is IND-CPA secure
or show that it is not IND-CPA secure.

The IND-CPA game works as follows:

1. The adversary Eve chooses two different messages, M0 and M1, and sends both mes-
sages to Alice.

2. Alice flips a fair coin. If the coin is heads, she encrypts M0. If the coin is tails, she
encrypts M1. Formally, Alice chooses a bit b ∈ {0, 1} uniformly at random, and then
encrypts Mb. Alice sends the encrypted message Enc(K,Mb) back to Eve.

3. Eve is now allowed to ask Alice for encryptions of messages of Eve’s choosing. Eve can
send a plaintext message to Alice, and Alice will always send back the encryption of
the message with the secret key. Eve is allowed to repeat this as many times as she
wants. Intuitively, this step is allowing Eve to perform a chosen-plaintext attack in an
attempt to learn something about which message was sent.

4. After Eve is finished asking for encryptions, she must guess whether the encrypted
message from step 2 is the encryption of M0 or M1.

If Eve can guess which message was sent with probability > 1/2, then Eve has won the game.
This means that Eve has learned some information about which message was sent, so the
scheme is not IND-CPA secure. On the other hand, if Eve cannot do any better than guess
with 1/2 probability, then Alice has won the game. Eve has learned nothing about which
message was sent, so the scheme is IND-CPA secure.

There are a few important caveats to the IND-CPA game to make it a useful, practical
security definition:

The messages M0 and M1 must be the same length. In almost all practical cryptosystems,
we allow ciphertexts to leak the length of the plaintext. Why? If we want a scheme that
doesn’t reveal the length of the plaintext, then we would need every ciphertext to be the
same length. If the ciphertext is always n bits long, then we wouldn’t be able to encrypt any
messages longer than n bits, which makes for a very impractical system. You could make n
very large so that you can encrypt most messages, but this would mean encrypting a one-bit
message requires an enormous n-bit ciphertext. Either way, such a system would be very
impractical in real life, so we allow cryptosystems to leak the length of the plaintext.

If we didn’t force M0 and M1 to be the same length, then our game would incorrectly mark
some IND-CPA secure schemes as insecure. In particular, if a scheme leaks the plaintext
length, it can still be considered IND-CPA secure. However, Eve would win the IND-CPA
game with this scheme, since she can send a short message and a long message, see if Alice
sends back a short or long ciphertext, and distinguish which message was sent. To account
for the fact that cryptosystems can leak plaintext length, we use equal-length messages in
the IND-CPA game.

Eve is limited to a practical number of encryption requests. In practice, some schemes may
be vulnerable to attacks but considered secure anyway, because those attacks are computa-

CS 161 Notes 9 of 79

tionally infeasible. For example, Eve could try to brute-force a 128-bit secret key, but this
would take 2128 computations. If each computation took 1 millisecond, this would take 1028

years, far longer than the age of our solar system. These attacks may be theoretically pos-
sible, but they are so inefficient that we don’t need to worry about attackers who try them.
To account for these computationally infeasible attacks in the IND-CPA game, we limit Eve
to a practical number of encryption requests. One commonly-used measure of practicality is
polynomially-bounded runtime: any algorithm Eve uses during the game must run in O(nk)
time, for some constant k.

Eve only wins if she has a non-negligible advantage. Consider a scheme where Eve can
correctly which message was sent with probability 1/2+1/2128. This number is greater than
1/2, but Eve’s advantage is 1/2128, which is astronomically small. In this case, we say that
Eve has negligible advantage–the advantage is so small that Eve cannot use it to mount any
practical attacks. For example, the scheme might use a 128-bit key, and Eve can break the
scheme if she guesses the key (with probability 1/2128). Although this is theoretically a valid
attack, the odds of guessing a 128-bit key are so astronomically small that we don’t need
to worry about it. The exact definition of negligible is beyond the scope of this class, but
in short, Eve only wins the IND-CPA game if she can guess which message was sent with
probability greater than 1/2 + n, where n is some non-negligible probability.

You might have noticed that in step 3, there is nothing preventing Eve from asking Alice
for the encryption of M0 or M1 again. This is by design: it means any deterministic scheme
is not IND-CPA secure, and it forces any IND-CPA secure scheme to be non-deterministic.
Informally, a deterministic scheme is one that, given a particular input, will always produce
the same output. For example, the Caesar Cipher that was seen in the previous chapter is
a deterministic scheme since giving it the same input twice will always produce the same
output (i.e. inputting “abcd” will always output “cdef” when we shift by 2). As we’ll see
later, deterministic schemes do leak information, so this game will correctly classify them as
IND-CPA insecure. In a later section we’ll also see how to win the IND-CPA game against
a deterministic scheme.

6.2 XOR review
Symmetric-key encryption often relies on the bitwise XOR (exclusive-or) operation (written
as ⊕), so let’s review the definition of XOR:

0⊕ 0 = 0

0⊕ 1 = 1

1⊕ 0 = 1

1⊕ 1 = 0

CS 161 Notes 10 of 79

Given this definition, we can derive some useful properties:

x⊕ 0 = x 0 is the identity

x⊕ x = 0 x is its own inverse

x⊕ y = y ⊕ x commutative property

(x⊕ y)⊕ z = x⊕ (y ⊕ z) associative property

One handy identity that follows from these is: x⊕ y⊕ x = y. In other words, given (x⊕ y),
you can retrieve y by computing (x⊕ y)⊕ x, effectively “cancelling out” the x.

We can also perform algebra with the XOR operation:

y ⊕ 1 = 0 goal: solve for y

y ⊕ 1⊕ 1 = 0⊕ 1 XOR both sides by 1

y = 1 simplify left-hand side using the identity above

6.3 One Time Pad
The first symmetric encryption scheme we’ll look at is the one-time pad (OTP). The one
time pad is a simple and idealized encryption scheme that helps illustrate some important
concepts, though as we will see shortly, it is impractical for real-world use.

In the one-time pad scheme, Alice and Bob share an n-bit secret key K = k1 · · · kn where
the bits k1, . . . kn are picked uniformly at random (they are the outcomes of independent
unbiased coin flips meaning that to pick k1 a coin is flipped and if it lands on heads, then
k1 is assigned 1, but if it lands on tails, k1 is assigned 0).

Suppose Alice wishes to send the n-bit message M = m1 · · ·mn.

The desired properties of the encryption scheme are:

1. It should scramble up the message, i.e., map it to a ciphertext C = c1 · · · cn.

2. Given knowledge of the secret key K, it should be easy to recover M from C.

3. Eve, who does not know K, should get no information about M .

Encryption in the one-time pad is very simple: cj = mj⊕kj. In words, you perform a bitwise
XOR of the message and the key. The jth bit of the ciphertext is the jth bit of the message,
XOR with the jth bit of the key.

We can derive the decryption algorithm by doing some algebra on the encryption equation:

cj = mj ⊕ kj encryption equation, solve for mj

cj ⊕ kj = mj ⊕ kj ⊕ kj XOR both sides by kj

cj ⊕ kj = mj simplify right-hand side using the handy identity from above

In words, given ciphertext C and key K, the jth bit of the plaintext is the jth bit of the
ciphertext, XOR with the jth bit of the key.

CS 161 Notes 11 of 79

To sum up, the one-time pad is described by specifying three procedures:

• Key generation: Alice and Bob pick a shared random key K.

• Encryption algorithm: C = M ⊕K.

• Decryption algorithm: M = C ⊕K.

Now let’s prove that the one-time pad is IND-CPA secure. In other words, we want to show
that in the IND-CPA game, the adversary Eve’s probability of guessing which message was
sent is 1/2.

Proof: For a fixed choice of plaintext M , every possible value of the ciphertext C can be
achieved by an appropriate and unique choice of the shared key K: namely K = M ⊕ C.
Since each such key value K is equally likely, it follows that C is also equally likely to be any
n-bit string. Thus Eve sees a uniformly random n bit string no matter what the plaintext
message was, and thus gets no information about which of the two messages was encrypted.

Here’s another way to see that Eve’s probability of guessing successfully is 1/2. Suppose Eve
observes the ciphertext C, and she knows that the message M is either M0 or M1, but she
does not know which. The probability space here has size 2n+1: it represents the 2n choices
for the n-bit key K, as well as the challenger’s choice of whether to send M0 or M1. All
2n+1 choices are equally likely. We can assume the key K is generated uniformly at random;
then the challenger randomly chooses a bit b ∈ {0, 1}, and Alice sends the encryption of Mb.
So, if Eve observes that the ciphertext has some specific value C, what is the conditional
probability that b = 0 given her observation? It is:

Pr[b = 0 | ciphertext = C] =
Pr[b = 0 ∧ ciphertext = C]

Pr[ciphertext = C]

=
Pr[b = 0 ∧K = M0 ⊕ C]

Pr[ciphertext = C]

=
1/2 · 1/2n

1/2n

=
1

2
.

The one time pad has a major drawback. As its name suggests, the shared key cannot be
reused to transmit another message M ′. If the key K is reused to encrypt two messages M
and M ′, then Eve can take the XOR of the two ciphertexts C = M ⊕K and C ′ = M ′ ⊕K
to obtain C ⊕ C ′ = M ⊕M ′. This gives partial information about the two messages. In
particular, if Eve happens to learn M , then she can deduce the other message M ′. In other
words, given M ⊕M ′ and M , she can calculate M ′ = (M ⊕M ′)⊕M . Actually, in this case,
she can reconstruct the key K, too. Question: How?2

In practice, even if Eve does not knowM orM ′, often there is enough redundancy in messages
that merely knowing M ⊕M ′ is enough to recover most of M and M ′. For instance, the US

2Answer: Given M and C = M ⊕K, Eve can calculate K = M ⊕ C.

CS 161 Notes 12 of 79

exploited this weakness to read some World War II era Soviet communications encrypted
with the one-time pad, when US cryptanalysts discovered that Soviet officials in charge of
generating random keys for the one-time pad got lazy and started re-using old keys. The
VENONA project, although initiated just shortly after World War II, remained secret until
the early 1980s.

We can see that the one-time pad with key reuse is insecure because Eve has learned some-
thing about the original messages (namely, the XOR of the two original messages). We can
also formally prove that the one-time pad with key reuse is not IND-CPA secure by show-
ing a strategy for the adversary Eve to correctly guess which message was encrypted, with
probability greater than 1/2.

Eve sends two messages, M0 and M1 to the challenger. The challenger randomly chooses
one message to encrypt and sends it back to Eve. At this point, Eve knows she has received
either M0⊕K or M1⊕K, depending on which message was encrypted. Eve is now allowed to
ask for the encryption of arbitrary messages, so she queries the challenger for the encryption
of M0. The challenger is using the same key for every message, so Eve will receive M0 ⊕K.
Eve can now compare this value to the encryption she is trying to guess: if the value matches,
then Eve knows that the challenger encrypted M0 and sent M0 ⊕ K. If the value doesn’t
match, then Eve knows that the challenger encrypted M1 and sent M1 ⊕K. Thus Eve can
guess which message the challenger encrypted with 100% probability! This is greater than
1/2 probability, so Eve has won the IND-CPA game, and we have proven that the one-time
pad scheme with key reuse is insecure.

Consequently, the one-time pad is not secure if the key is used to encrypt more than one
message. This makes it impractical for almost all real-world situations–if Alice and Bob
want to encrypt an n-bit message with a one-time pad, they will first need to securely send
each other a new, previously unused n-bit key. But if they’ve found a method to securely
exchange an n-bit key, they could have just used that same method to exchange the n-bit
message!3

6.4 Block Ciphers
As we’ve just seen, generating new keys for every encryption is difficult and expensive.
Instead, in most symmetric encryption schemes, Alice and Bob share a secret key and use this
single key to repeatedly encrypt and decrypt messages. The block cipher is a fundamental
building block in implementing such a symmetric encryption scheme.

Intuitively, a block cipher transforms a fixed-length n-bit input into a fixed-length n-bit
output. The block cipher has 2k different settings for scrambling, so it also takes in a k-bit

3This is why the only primary users of one-time-pads are spies in the field. Before the spy leaves, they
obtain a large amount of key material. Unlike the other encryption systems we’ll see in these notes, a
one-time pad can be processed entirely with pencil and paper. The spy then broadcasts messages encrypted
with the one-time pad to send back to their home base. To obfuscate the spy’s communication, there are
also “numbers stations” that continually broadcast meaningless sequences of random numbers. Since the
one-time pad is IND-CPA secure, an adversary can’t distinguish between the random number broadcasts
and the messages encoded with a one time pad.

CS 161 Notes 13 of 79

key as input to determine which scrambling setting should be used. Each key corresponds
to a different scrambling setting. The idea is that an attacker who doesn’t know the secret
key won’t know what mode of scrambling is being used, and thus won’t be able to decrypt
messages encrypted with the block cipher.

A block cipher has two operations: encryption takes in an n-bit plaintext and a k-bit key as
input and outputs an n-bit ciphertext. Decryption takes in an n-bit ciphertext and a k-bit
key as input and outputs an n-bit plaintext. Question: why does the decryption require the
key as input?4

Given a fixed scrambling setting (key), the block cipher encryption must map each of the 2n

possible plaintext inputs to a different ciphertext output. In other words, given a specific key,
the block cipher encryption must be able to map every possible input to a unique output. If
the block cipher mapped two plaintext inputs to the same ciphertext output, there would be
no way to decrypt that ciphertext back into plaintext, since that ciphertext could correspond
to multiple different plaintexts. This means that the block cipher must also be deterministic.
Given the same input and key, the block cipher should always give the same output.

In mathematical notation, the block cipher can be described as follows. There is an encryp-
tion function E : {0, 1}k × {0, 1}n → {0, 1}n. This notation means we are mapping a k-bit
input (the key) and an n-bit input (the plaintext message) to an n-bit output (the ciphertext).
Once we fix the key K, we get a function mapping n bits to n bits: EK : {0, 1}n → {0, 1}n
defined by EK(M) = E(K,M). EK is required to be a permutation on the n-bit strings.
In other words, it must be an invertible (bijective) function. The inverse mapping of this
permutation is the decryption algorithm DK . In other words, decryption is the reverse of
encryption: DK(EK(M)) = M .

The block cipher as defined above is a category of functions, meaning that there are many
different implementations of a block cipher. Today, the most commonly used block cipher
implementation is called Advanced Encryption Standard (AES). It was designed in 1998 by
Joan Daemen and Vincent Rijmen, two researchers from Belgium, in response to a compe-
tition organized by NIST.5

AES uses a block length of n = 128 bits and a key length of k = 128 bits. It can also support
k = 192 or k = 256 bit keys, but we will assume 128-bit keys in this class. It was designed
to be extremely fast in both hardware and software.

6.5 Block Cipher Security
Block ciphers, including AES, are not IND-CPA secure on their own because they are de-
terministic. In other words, encrypting the same message twice with the same key produces
the same output twice. The strategy that an adversary, Eve, uses to break the security of
AES is exactly the same as the strategy from the one-time pad with key reuse. Eve sends

4Answer: The key is needed to determine which scrambling setting was used to generate the ciphertext.
If decryption didn’t require a key, any attacker would be able to decrypt encrypted messages!

5Fun fact: Professor David Wagner, who sometimes teaches this class, was part of the team that came
up with a block cipher called TwoFish, which was one of the finalists in the NIST competition.

CS 161 Notes 14 of 79

https://en.wikipedia.org/wiki/Twofish

M0 and M1 to the challenger and receives either E(K,M0) or E(K,M1). She then queries
the challenger for the encryption of M0 and receives E(K,M0). If the two encryptions she
receives from the challenger are the same, then Eve knows the challenger encrypted M0 and
sent E(K,M0). If the two encryptions are different, then Eve knows the challenger encrypted
M1 and sent E(K,M1). Thus Eve can win the IND-CPA game with probability 100% > 1/2,
and the block cipher is not IND-CPA secure.

Although block ciphers are not IND-CPA secure, they have a desirable security property
that will help us build IND-CPA secure symmetric encryption schemes: namely, a block
cipher is computationally indistinguishable from a random permutation. In other words, for
a fixed key K, EK “behaves like” a random permutation on the n-bit strings.

A random permutation is a function that maps each n-bit input to exactly one random n-bit
output. One way to generate a random permutation is to write out all 2n possible inputs in
one column and all 2n possible outputs in another column, and then draw 2n random lines
connecting each input to each output. Once generated, the function itself is not random:
given the same input twice, the function gives the same output twice. However, the choice
of which output is given is randomly determined when the function is created.

Formally, we perform the following experiment to show that a block cipher is indistinguish-
able from a random permutation. The adversary, Eve, is given a box which contains either
(I) the encryption function EK with a randomly chosen key K, or (II) a permutation π on
n bits chosen uniformly at random when the box was created (in other words, map each
n-bit input to a different random n-bit output). The type of box given to Eve is randomly
selected, but we don’t tell Eve which type of box she has been given. We also don’t tell Eve
the value of the key K.

Eve is now allowed to play with the box as follows: Eve can supply an input x to the box
and receive a corresponding output y from the box (namely, y = EK(x) for a type-I box, or
y = π(x) for a type-II box). After playing with the box, Eve must guess whether the box is
type I or type II. If the block cipher is truly indistinguishable from random, then Eve cannot
guess which type of box she received with probability greater than 1/2.

AES is not truly indistinguishable from random, but it is believed to be computationally
indistinguishable from random. Intuitively, this means that given a practical amount of
computation power (e.g. polynomially-bounded runtime), Eve cannot guess which type of
box she received with probability greater than 1/2. Another way to think of computational
indistinguishability is: Eve can guess which type of box she received with probability 1/2,
plus some negligible amount (e.g. 1/2128). With infinite computational time and power, Eve
could leverage this tiny 1/2128 advantage to guess which box she received, but with only a
practical amount of computation power, this advantage is useless for Eve.

The computational indistinguishability property of AES gives us a strong security guarantee:
given a single ciphertext C = EK(M), an attacker without the key cannot learn anything
about the original message M . If the attacker could learn something about M , then AES
would no longer be computationally indistinguishable: in the experiment from before, Eve
could feed M into the box and see if given only the output from the box, she can learn
something about M . If Eve learns something about M , then she knows the output came

CS 161 Notes 15 of 79

from a block cipher. If Eve learns nothing about M , then she knows the output came from
a random permutation. However, since we believe that AES is computationally indistin-
guishable from random, we can say that an attacker who receives a ciphertext learns nothing
about the original message.

There is no proof that AES is computationally indistinguishable from random, but it is
believed to be computationally indistinguishable. After all these years, the best known
attack is still exhaustive key search, where the attacker systematically tries decrypting some
ciphertext using every possible key to see which one gives intelligible plaintext. Given infinite
computational time and power, exhaustive key search can break AES, which is why it is not
truly indistinguishable from random. However, with a 128-bit key, exhaustive key search
requires 2128 computations in the worst case (2127 on average). This is a large enough
number that even the fastest current supercomputers couldn’t possibly mount an exhaustive
key search attack against AES within the lifetime of our Solar system.

Thus, AES behaves very differently than the one-time pad. Even given a very large number
of plaintext/ciphertext pairs, there appears to be no effective way to decrypt any new ci-
phertexts. We can leverage this property to build symmetric-key encryption schemes where
there is no effective way to decrypt any ciphertext, even if it’s the encryption of a message
we’ve seen before.

6.6 Block Cipher Modes of Operation
There are two main reasons AES by itself cannot be a practical IND-CPA secure encryption
scheme. The first is that we’d like to encrypt arbitrarily long messages, but the block cipher
only takes fixed-length inputs. The other is that if the same message is sent twice, the
ciphertext in the two transmissions is the same with AES (i.e. it is deterministic). To fix
these problems, the encryption algorithm can either be randomized or stateful—it either
flips coins during its execution, or its operation depends upon some state information. The
decryption algorithm, however, is neither randomized nor stateful.

There are several standard ways (or modes of operation) of building an encryption algorithm,
using a block cipher:

ECB Mode (Electronic Code Book): In this mode the plaintext M is simply broken into
n-bit blocks M1 · · ·Ml, and each block is encoded using the block cipher: Ci = EK(Mi). The
ciphertext is just a concatenation of these individual blocks: C = C1 ·C2 · · ·Cl. This scheme
is flawed. Any redundancy in the blocks will show through and allow the eavesdropper
to deduce information about the plaintext. For instance, if Mi = Mj, then we will have
Ci = Cj, which is visible to the eavesdropper; so ECB mode leaks information about the
plaintext.

• ECB mode encryption: Ci = EK(Mi)

• ECB mode decryption: Mi = DK(Ci)

CS 161 Notes 16 of 79

CBC Mode (Cipher Block Chaining): This is a popular mode for commercial applications.
For each message the sender picks a random n-bit string, called the initial vector or IV.
Define C0 = IV . The ith ciphertext block is given by Ci = EK(Ci−1 ⊕Mi). The ciphertext
is the concatenation of the initial vector and these individual blocks: C = IV ·C1 ·C2 · · ·Cl.
CBC mode has been proven to provide strong security guarantees on the privacy of the
plaintext message (assuming the underlying block cipher is secure).

• CBC mode encryption:

{
C0 = IV

Ci = EK(Pi ⊕ Ci−1)

• CBC mode decryption: Pi = DK(Ci)⊕ Ci−1

CS 161 Notes 17 of 79

CFB Mode (Ciphertext Feedback Mode): This is another popular mode with properties
very similar to CBC mode. Again, C0 is the IV. The ith ciphertext block is given by Ci =
EK(Ci−1)⊕Mi.

• CFB mode encryption:

{
C0 = IV

Ci = EK(Ci−1)⊕ Pi

• CFB mode decryption: Pi = EK(Ci−1)⊕ Ci

CS 161 Notes 18 of 79

OFB Mode (Output Feedback Mode): In this mode, the initial vector IV is repeatedly
encrypted to obtain a set of values Zi as follows: Z0 = IV and Zi = EK(Zi−1). These values
Zi are now used as though they were the key for a one-time pad, so that Ci = Zi ⊕Mi.
The ciphertext is the concatenation of the initial vector and these individual blocks: C =
IV · C1 · C2 · · ·Cl. In OFB mode, it is very easy to tamper with ciphertexts. For instance,
suppose that the adversary happens to know that the jth block of the message, Mj, specifies
the amount of money being transferred to his account from the bank, and suppose he also
knows that Mj = 100. Since he knows both Mj and Cj, he can determine Zj. He can
then substitute any n-bit block in place of Mj and get a new ciphertext C ′j where the 100
is replaced by any amount of his choice. This kind of tampering is also possible with other
modes of operation as well (so don’t be fooled into thinking that CBC mode is safe from
tampering); it’s just easier to illustrate on OFB mode.

• OFB mode encryption:

Z0 = IV

Zi = EK(Zi−1)

Ci = Mi ⊕ Zi

• OFB mode decryption: Pi = Ci ⊕ Zi

CS 161 Notes 19 of 79

Counter (CTR) Mode: In CTR mode, a counter is initialized to IV and repeatedly
incremented and encrypted to obtain a sequence that can now be used as though they were
the keys for a one-time pad: namely, Zi = EK(IV + i) and Ci = Zi ⊕Mi. In CTR mode,
the IV is sometimes renamed the nonce. This is just a terminology difference–nonce and IV
can be used interchangeably for the purposes of this class.

Note that in CTR and OFB modes, the decryption algorithm uses the block cipher en-
cryption function instead of the decryption function. Intuitively, this is because Alice used
the encryption function to generate a one-time pad, so Bob should also use the encryption
function to generate the same pad. The plaintext is never passed through the block cipher
encryption, so the block cipher decryption is never used.

• CTR mode encryption: Ci = EK(IV + i)⊕Mi

• CTR mode decryption: Mi = EK(IV + i)⊕ Ci

CS 161 Notes 20 of 79

For the rest of these notes, we will focus on analyzing CBC and CTR modes. As an exercise,
you can try performing similar analysis on the other modes as well.

6.7 Parallelization
In some modes, successive blocks must be encrypted or decrypted sequentially. In other
words, to encrypt the ith block of plaintext, you first need to encrypt the i − 1th block of
plaintext and see the i − 1th block of ciphertext output. For high-speed applications, it is
often useful to parallelize encryption and decryption.

Of the schemes described above, which ones have parallelizable encryption? Which ones
have parallelizable decryption?

CBC mode encryption cannot be parallelized. By examining the encryption equation Ci =
EK(Pi ⊕ Ci−1), we can see that to calculate Ci, we first need to know the value of Ci−1. In
other words, we have to encrypt the i− 1th block first before we can encrypt the ith block.

CBC mode decryption can be parallelized. Again, we examine the decryption equation
Pi = DK(Ci)⊕ Ci−1. To calculate Pi, we need Ci and Ci−1. Neither of these values need to

CS 161 Notes 21 of 79

be calculated–when we’re decrypting, we already have all of the ciphertext blocks. Thus we
can compute all the Pi in parallel.

CTR mode encryption and decryption can both be parallelized. To see this, we can examine
the encryption and decryption diagrams. Note that each block cipher only takes the nonce
and counter as input, and there is no reliance on any previous ciphertext or plaintext.

6.8 Padding
We have already reasoned that block ciphers let us encrypt messages that are longer than
one block long. What happens if we want to send a message that is not a multiple of the
block size? It turns out the answer depends on which mode is being used. For this section,
assume that the block size is 128 bits, or 16 bytes (16 characters).

In CBC mode, if the plaintext length isn’t a multiple of 128 bits, then the last block of
plaintext will be slightly shorter than 128 bits. Then the XOR between the 128-bit previous
ciphertext and the less-than-128-bit last block of plaintext would be undefined–bitwise XOR
only works if the two inputs being XORed are the same length.

Suppose the last block of plaintext is only 100 bits. What if we just XOR the first 100 bits
of the previous ciphertext with the 100 bits of plaintext, and ignore the last 28 bits of the
previous ciphertext? Now we have a 100-bit input to the block cipher, which only takes
128-bit inputs. This input is undefined for the block cipher.

The solution to this problem is to add padding to the plaintext until it is a multiple of 128
bits.

If we add padding to make the plaintext a multiple of 128 bits, we will need to be able to
remove the padding later to correctly recover the original message. Some forms of padding
can create ambiguity: for example, consider a padding scheme where we pad a message with
all 1s. What happens if we need to pad a message 0000000010111? We would add 1s until
it’s a multiple of the block size, e.g. 0000000010111111. When we try to depad the message,
we run into some ambiguity. How many 1s do we remove from the end of the message? It’s
unclear.

One correct padding scheme is PKCS#76 padding. In this scheme, we pad the message by
the number of padding bytes used. For example, the message above would be padded as
0000000010111333, because 3 bytes of padding were needed. To remove the padding, we
note that the message ends in a 3, so 3 bytes of padding were used, so we can unambiguously
remove the last 3 bytes of padding. Note that if the message is already a multiple of a block
size, an entire new block is appended. This way, there is always one unique padding pattern
at the end of the message.

Not all modes need padded plaintext input. For example, let’s look at CTR mode next.
Again, suppose we only have 100 bits in your last block of plaintext. This time, we can
actually XOR the 100 bits of plaintext with the first 100 bits of block cipher output, and
ignore the last 28 bits of block cipher output. Why? Because the result of the XOR never

6PKCS stands for Public Key Cryptography Standards.

CS 161 Notes 22 of 79

has to be passed into a block cipher again, so we don’t care if it’s slightly shorter than 128
bits. The last ciphertext block will just end up being 100 bits instead of 128 bits, and that’s
okay because it’s never used as an input to a block cipher.

How does decryption work? From our encryption step, the last ciphertext block is only 100
bits instead of 128 bits. Then to retrieve the last 100 bits of plaintext, all we have to do is
XOR the 100 bits of ciphertext with the first 100 bits of the block cipher output and ignore
the last 28 bits of block cipher output.

Recall that CTR mode can be thought of as generating a one-time pad through block ciphers.
If the pad is too long, you can just throw away the last few bits of the pad in both the
encryption and decryption steps.

6.9 Reusing IVs is insecure
Remember that ECB mode is not IND-CPA secure because it is deterministic. Encrypting
the same plaintext twice always results in the same output, and this causes information
leakage. All the other modes introduce a random initialization vector (IV) that is different
on every encryption in order to ensure that encrypting the same plaintext twice with the
same key results in different output.

This also means that when using secure block cipher modes, it is important to always choose
a different, random, unpredictable IV for each new encryption. If the same IV is reused,
the scheme becomes deterministic, and information is potentially leaked. The severity of
information leakage depends on what messages are being encrypted and which mode is
being used.

For example, in CTR mode, reusing the IV (nonce) is equivalent to reusing the one-time
pad. An attacker who sees two different messages encrypted with the same IV will know the
bitwise XOR of the two messages. However, in CBC mode, reusing the IV on two different
messages only reveals if two messages start with the same blocks, up until the first difference.

Different modes have different tradeoffs between usability and security. Although proper use
of CBC and CTR mode are both IND-CPA, insecure use of either mode (e.g. reusing the
IV) breaks IND-CPA security, and the severity of information leakage is different in the two
modes. In CBC mode, the information leakage is contained, but in CTR mode, the leakage
is catastrophic (equivalent to reusing a one-time pad). On the other hand, CTR mode can
be parallelized, but CBC can not, which is why many high performance systems use CTR
mode or CTR-mode based encryption schemes.

CS 161 Notes 23 of 79

7 Cryptographic Hashes
7.1 Overview
A cryptographic hash function is a function, H, that when applied on a message, M , can
be used to generate a fixed-length “fingerprint” of the message. As such, any change to the
message, no matter how small, will change many of the bits of the hash value with there
being no detectable patterns as to how the output changes based on specific input changes.
In other words, any changes to the message, M , will change the resulting hash-value in some
seemingly random way.

The hash function, H, is deterministic, meaning if you compute H(M) twice with the same
input M , you will always get the same output twice. The hash function is unkeyed, as it
only takes in a message M and no secret key. This means anybody can compute hashes on
any message.

Typically, the output of a hash function is a fixed size: for instance, the SHA256 hash
algorithm can be used to hash a message of any size, but always produces a 256-bit hash
value. In a secure hash function, the output of the hash function looks like a random
string, chosen differently and independently for each message—except that, of course, a
hash function is a deterministic procedure.

To understand the intuition behind hash functions, let’s take a look at one of its many uses:
document comparisons. Suppose Alice and Bob both have a large, 1 GB document and
wanted to know whether the files were the same. While they could go over each word in
the document and manually compare the two, hashes provide a quick and easy alternative.
Alice and Bob could each compute a hash over the document and securely communicate
the hash values to one another. Then, since hash functions are deterministic, if the hashes
are the same, then the files must be the same since they have the same “fingerprint”. On
the other hand, if the hashes are different, it must be the case that the files are different.
Determinism in hash functions ensures that providing the same input twice (i.e. providing
the same document) will result in the same hash value; however, providing different inputs
(i.e. providing two different documents) will result in two different hash values.

7.2 Properties of Hash Functions
Cryptographic hash functions have several useful properties. The most significant include
the following:

• One-way: The hash function can be computed efficiently: given x, it is easy to
compute H(x). However, given a hash output y, it is infeasible to find any input
x such that H(x) = y. (This property is also known as “preimage resistant.”)
Intuitively, the one-way property claims that given an output of a hash function, it is
infeasible for an adversary to find any input that hashes to the given output.

• Second preimage resistant: Given an input x, it is infeasible to find another input
x′ such that x′ 6= x but H(x) = H(x′). This property is closely related to preimage

CS 161 Notes 24 of 79

resistance; the difference is that here the adversary also knows a starting point, x, and
wishes to tweak it to x′ in order to produce the same hash—but cannot. Intuitively,
the second preimage resistant property claims that given an input, it is infeasible for
an adversary to find another input that has the same hash value as the original input.

• Collision resistant: It is infeasible to find any pair of messages x, x′ such that x′ 6= x
but H(x) = H(x′). Again, this property is closely related to the previous ones. Here,
the difference is that the adversary can freely choose their starting point, x, potentially
designing it specially to enable finding the associated x′—but again cannot. Intuitively,
the collision resistance property claims that it is infeasible for an adversary to find any
two inputs that both hash to the same value. While it is impossible to design a hash
function that has absolutely no collisions since there are more inputs than outputs
(remember the pigeonhole principle), it is possible to design a hash function that
makes finding collisions infeasible for an attacker.

By “infeasible”, we mean that there is no known way to accomplish it with any realistic
amount of computing power.

Note, the third property implies the second property. Cryptographers tend to keep them
separate because a given hash function’s resistance towards the one might differ from its
resistance towards the other (where resistance means the amount of computing power needed
to achieve a given chance of success).

Under certain threat models, hash functions can be used to verify message integrity. For
instance, suppose Alice downloads a copy of the installation disk for the latest version of the
Ubuntu distribution, but before she installs it onto her computer, she would like to verify that
she has a valid copy of the Ubuntu software and not something that was modified in transit
by an attacker. One approach is for the Ubuntu developers to compute the SHA256 hash
of the intended contents of the installation disk, and distribute this 256-bit hash value over
many channels (e.g., print it in the newspaper, include it on their business cards, etc.). Then
Alice could compute the SHA256 hash of the contents of the disk image she has downloaded,
and compare it to the hash publicized by Ubuntu developers. If they match, then it would
be reasonable for Alice to conclude that she received a good copy of the legitimate Ubuntu
software. Because the hash is collision-resistant, an attacker could not change the Ubuntu
software while keeping the hash the same. Of course, this procedure only works if Alice has a
good reason to believe that she has the correct hash value, and it hasn’t been tampered with
by an adversary. If we change our threat model to allow the adversary to tamper with the
hash, then this approach no longer works. The adversary could simply change the software,
hash the changed software, and present the changed hash to Alice.

7.3 Hash Algorithms
Cryptographic hashes have evolved over time. One of the earliest hash functions, MD5
(Message Digest 5) was broken years ago. The slightly more recent SHA1 (Secure Hash
Algorithm) was broken in 2017, although by then it was already suspected to be insecure.
Systems which rely on MD5 or SHA1 actually resisting attackers are thus considered inse-
cure. Outdated hashes have also proven problematic in non-cryptographic systems. The git

CS 161 Notes 25 of 79

version control program, for example, identifies identical files by checking if the files produce
the same SHA1 hash. This worked just fine until someone discovered how to produce SHA1
collisions.

Today, there are two primary “families” of hash algorithms in common use that are believed
to be secure: SHA2 and SHA3. Within each family, there are differing output lengths.
SHA-256, SHA-384, and SHA-512 are all instances of the SHA2 family with outputs of 256b,
384b, and 512b respectively, while SHA3-256, SHA3-384, and SHA3-512 are the SHA3 family
members.

For the purposes of the class, we don’t care which of SHA2 or SHA3 we use, although
they are in practice very different functions. The only significant difference is that SHA2 is
vulnerable to a length extension attack. Given H(M) and the length of the message, but not
M itself, there are circumstances where an attacker can compute H(M ||M ′) for an arbitrary
M ′ of the attacker’s choosing. This is because SHA2’s output reflects all of its internal state,
while SHA3 includes internal state that is never outputted but only used in the calculation
of subsequent hashes. While this does not violate any of the aforementioned properties of
hash functions, it is undesirable in some circumstances.

In general, we prefer using a hash function that is related to the length of any associated
symmetric key algorithm. By relating the hash function’s output length with the symmetric
encryption algorithm’s key length, we can ensure that it is equally difficult for an attacker
to break either scheme. For example, if we are using AES-128, we should use SHA-256 or
SHA3-256. Assuming both functions are secure, it takes 2128 operations to brute-force a 128
bit key and 2128 operations to generate a hash collision on a 256 bit hash function. For longer
key lengths, however, we may relax the hash difficulty. For example, with 256b AES, the
NSA uses SHA-384, not SHA-512, because, let’s face it, 2196 operations is already a hugely
impractical amount of computation.

7.4 Lowest-hash scheme
Cryptographic hashes have many practical applications outside of cryptography. Here’s one
example that illustrates many useful properties of cryptographic hashes.

Suppose you are a journalist, and a hacker contacts you claiming to have stolen 150 million
records from a website. The hacker is keeping the records for ransom, so they don’t want to
present all 150 million files to you. However, they still wish to prove to you that they have
actually stolen 150 million different records, and they didn’t steal significantly fewer records
and exaggerate the number. How can you be sure that the hacker isn’t lying, without seeing
all 150 million records?

Remember that the outputs of cryptographic hashes look effectively random–two different
inputs, even if they only differ in one bit, give two unpredictably different outputs. Can we
use these random-looking outputs to our advantage?

Consider a box with 100 balls, numbered from 1 to 100. You draw a ball at random, observe
the value, and put it back. You repeat this n times, then report the lowest number you saw
in the n draws. If you drew 10 balls (n=10), you would expect the lowest number to be

CS 161 Notes 26 of 79

approximately 10. If you drew 100 balls (n=100), you might expect the lowest number to be
somewhere in the range 1-5. If you drew 150 million balls (n=150,000,000), you would be
pretty sure that the lowest number was 1. Someone who claims to have drawn 150 million
balls and seen a lowest number of 50 has either witnessed an astronomically unlikely event,
or is lying about their claim.

We can apply this same idea to hashes. If the hacker hashes all 150 million records, they
are effectively generating 150 million unpredictable fixed-length bitstrings, just like drawing
balls from the box 150 million times. With some probability calculations (out of scope for
this class), we can determine the expected range of the lowest hash values, as well as what
values would be astronomically unlikely to be the lowest of 150 million random hashes.

With this idea in mind, we might ask the hacker to hash all 150 million records with a
cryptographic hash and return the 10 lowest resulting hashes. We can then check if those
hashes are consistent with what we would expect the lowest 10 samples out of 150 million
random bitstrings to be. If the hacker only hashed 15 million records and returned the lowest
10 hashes, we should notice that the probability of getting those 10 lowest hashes from 150
million records is astronomically low and conclude that the hacker is lying about their claim.

What if the hacker tries to cheat? If the hacker only has 15 million records, they might try
to generate 150 million fake records, hash the fake records, and return the lowest 10 hashes
to us. We can make this attack much harder for the attacker by requiring that the attacker
also send the 10 records corresponding to the lowest hashes. The hacker won’t know which
of these 150 million fake records results in the lowest hash, so to guarantee that they can fool
the reporter, all 150 million fake records would need to look valid to the reporter. Depending
on the setting, this can be very hard or impossible: for example, if we expect the records
to be in a consistent format, e.g. lastname, firstname, then the attacker would need to
generate 150 million fake records that follow the same format.

Still, the hacker might decide to spend some time precomputing fake records with low hashes
before making a claim. This is called an offline attack, since the attacker is generating
records offline before interacting with the reporter. We will see more offline attacks when we
discuss password hashing later in the notes. We can prevent the offline attack by having the
reporter choose a random word at the start of the interaction, like “fubar,” and send it to the
hacker. Now, instead of hashing each record, the hacker will hash each record, concatenated
with the random word. The reporter will give the attacker just enough time to compute 150
million hashes (but no more) before requesting the 10 lowest values. Now, a cheating hacker
cannot compute values ahead of time, because they won’t know what the random word is.

A slight variation on this method is to hash each record 10 separate times, each with a
different reporter-chosen random word concatenated to the end (e.g. “fubar-1,” “fubar-2,”
“fubar-3,” etc.). In total, the hacker is now hashing 1.5b (150 million times 10) records.
Then, instead of returning the lowest 10 hashes overall, the hacker returns the record with
the lowest hash for each random word. Another way to think of this variation is: the hacker
hashes all 150 million records with the first random word concatenated to each record, and
returns the record with the lowest hash. Then the hacker hashes all 150 million records again
with the second random word concatenated to each record, and returns the record with the

CS 161 Notes 27 of 79

lowest hash. This process repeats 10 times until the hacker has presented 10 hashes. The
math for using the hash values to estimate the total number of lines is slightly different in
this variation (the original uses random selection without substitution, while the variant uses
random selection with substitution), but the underlying idea is the same.

CS 161 Notes 28 of 79

8 Message Authentication Codes (MACs)

8.1 Integrity and Authenticity
When building cryptographic schemes that guarantee integrity and authentication, the threat
we’re concerned about is adversaries who send messages pretending to be from a legitimate
participant (spoofing) or who modify the contents of a message sent by a legitimate partic-
ipant (tampering). To address these threats, we will introduce cryptographic schemes that
enable the recipient to detect spoofing and tampering.

In this section, we will define message authentication codes (MACs) and show how they
guarantee integrity and authenticity. Because MACs are a symmetric-key cryptographic
primitive, in this section we can assume that Alice and Bob share a secret key that is not
known to anyone else. Later we will see how Alice and Bob might securely exchange a shared
secret key over an insecure communication channel, but for now you can assume that only
Alice and Bob know the value of the secret key.

8.2 MAC: Definition
A MAC is a keyed checksum of the message that is sent along with the message. It takes
in a fixed-length secret key and an arbitrary-length message, and outputs a fixed-length
checksum. A secure MAC has the property that any change to the message will render the
checksum invalid.

Formally, the MAC on a message M is a value F (K,M) computed from K and M ; the value
F (K,M) is called the tag for M or the MAC of M . Typically, we might use a 128-bit key
K and 128-bit tags.

When Alice wants to send a message with integrity and authentication, she first computes
a MAC on the message T = F (K,M). She sends the message and the MAC 〈M,T 〉 to Bob.
When Bob receives 〈M,T 〉, Bob will recompute F (K,M) using the M he received and check
that it matches the MAC T he received. If it matches, Bob will accept the message M as
valid, authentic, and untampered; if F (K,M) 6= T , Bob will ignore the message M and
presume that some tampering or message corruption has occurred.

Note that MACs must be deterministic for correctness–when Alice calculates T = F (K,M)
and sends 〈M,T 〉 to Alice, Bob should get the same result when he calculates F (K,M) with
the same K and M .

MACs can be used for more than just communication security. For instance, suppose we
want to store files on a removable USB flash drive, which we occasionally share with our
friends. To protect against tampering with the files on our flash drive, our machine could
generate a secret key and store a MAC of each file somewhere on the flash drive. When our
machine reads the file, it could check that the MAC is valid before using the file contents.
In a sense, this is a case where we are “communicating” to a “future version of ourselves,”
so security for stored data can be viewed as a variant of communication security.

CS 161 Notes 29 of 79

8.3 MAC: Security properties
Given a secure MAC algorithm F , if the attacker replaces M by some other message M ′,
then the tag will almost certainly7 no longer be valid: in particular, F (K,M) 6= F (K,M ′)
for any M ′ 6= M .

More generally, there will be no way for the adversary to modify the message and then make
a corresponding modification to the tag to trick Bob into accepting the modified message:
given M and T = F (K,M), an attacker who does not know the key K should be unable
to find a different message M ′ and a tag T ′ such that T ′ is a valid tag on M ′ (i.e., such
that T ′ = F (K,M ′)). Secure MACs are designed to ensure that even small changes to the
message make unpredictable changes to the tag, so that the adversary cannot guess the
correct tag for their malicious message M ′.

Recall that MACs are deterministic–if Alice calculates F (K,M) twice on the same mes-
sage M , she will get the same MAC twice. This means that an attacker who sees a pair
M,F (K,M) will know a valid MAC for the message M . However, if the MAC is secure,
the attacker should be unable to create valid MACs for messages that they have never seen
before.

More generally, secure MACs are designed to be secure against known-plaintext attacks. For
instance, suppose an adversary Eve eavesdrops on Alice’s communications and observes a
number of messages and their corresponding tags: 〈M1, T1〉, 〈M2, T2〉, . . . , 〈Mn, Tn〉, where
Ti = F (K,Mi). Then Eve has no hope of finding some new message M ′ (such that M ′ /∈
{M1, . . . ,Mn}) and a corresponding value T ′ such that T ′ is the correct tag on M ′ (i.e., such
that T ′ = F (K,M ′)). The same is true even if Eve was able to choose the Mi’s. In other
words, even though Eve may know some valid MACs 〈Mn, Tn〉, she still cannot generate
valid MACs for messages she has never seen before.

Here is a formal security definition that captures both properties described above. We
imagine a game played between Georgia (the adversary) and Reginald (the referee). Initially,
Reginald picks a random key K, which will be used for all subsequent rounds of the game.
In each round of the game, Georgia may query Reginald with one of two kinds of queries:

• Generation query: Georgia may specify a message Mi and ask for the tag for Mi.
Reginald will respond with Ti = F (K,Mi).

• Verification query: Alternatively, Georgia may specify a pair of values 〈Mi, Ti〉 and

ask Reginald whether Ti is a valid tag on Mi. Reginald checks whether Ti
?
= F (K,Mi)

and responds “Yes” or “No” accordingly.

Georgia is allowed to repeatedly interact with Reginald in this way. Georgia wins if she
ever asks Reginald a verification query 〈Mn, Tn〉 where Reginald responds “Yes”, and where
Mn did not appear in any previous generation query to Reginald. In this case, we say that
Georgia has successfully forged a tag. If Georgia can successfully forge, then the MAC

7Strictly speaking, there is a very small chance that the tag for M will also be a valid tag for M ′. However,
if we choose tags to be long enough—say, 128 bits—and if the MAC algorithm is secure, the chances of this
happening should be about 1/2128, which is small enough that it can be safely ignored.

CS 161 Notes 30 of 79

algorithm is insecure. Otherwise, if there is no strategy that allows Georgia to forge (given a
generous allotment of computation time and any reasonable number of rounds of the game),
then we say that the MAC algorithm is secure.

This game captures the idea that Georgia the Forger can try to observe the MAC tag on
a bunch of messages, but this won’t help her forge a valid tag on any new message. In
fact, even if Georgia carefully selects a bunch of chosen messages and gets Alice to transmit
those messages (i.e., she gets Alice to compute the MAC on those messages with her key,
and then transmit those MAC tags), it still won’t help Georgia forge a valid tag on any
new message. Thus, MACs provide security against chosen-plaintext/ciphertext attacks, the
strongest threat model.

8.4 AES-EMAC
How do we build secure MACs?

There are a number of schemes out there, but one good one is AES-CMAC, an algorithm
standardized by NIST. Instead of showing you AES-CMAC, we’ll look at a related algorithm
called AES-EMAC. AES-EMAC is a slightly simplified version of AES-CMAC that retains
its essential character but differs in a few details.

In AES-EMAC, the key K is 256 bits, viewed as a pair of 128-bit AES keys: K = 〈K1, K2〉.
The message M is decomposed into a sequence of 128-bit blocks: M = P1||P2||...||Pn. We
set S0 = 0 and compute

Si = AESK1(Si−1 ⊕ Pi), for i = 1, 2, . . . , n.

Finally we compute T = AESK2(Sn); T is the tag for message M . Here is what it looks like:

AESP1

AES

K1

K1

AESPn-1

K1

AES

K1

P2

Pn

S1

Sn-1
Sn AES

T

K2

CS 161 Notes 31 of 79

Assuming AES is a secure block cipher, this scheme is provably secure, using the unforge-
ability definition and security game described in the previous section. An attacker cannot
forge a valid AES-EMAC for a message they haven’t seen before, even if they are allowed to
query for MACs of other messages.

8.5 HMAC
One of the best MAC constructions available is the HMAC, or Hash Message Authentication
Code, which uses the cryptographic properties of a cryptographic hash function to construct
a secure MAC algorithm.

HMAC is an excellent construction because it combines the benefits of both a MAC and the
underlying hash. Without the key, the tag does not leak information about the message.
Even with the key, it is computationally intractable to reconstruct the message from the
hash output.

There are several specific implementations of HMAC that use different cryptographic hash
functions: for example, HMAC SHA256 uses SHA256 as the underlying hash, while
HMAC SHA3 256 uses SHA3 in 256 bit mode as the underlying hash function. The choice
of underlying hash depends on the application. For example, if we are using HMACs with
a block cipher, we would want to choose an HMAC whose output is twice the length of the
keys used for the associated block cipher, so if we are encrypting using AES 192 we should
use HMAC SHA 384 or HMAC SHA3 384.

The output of HMAC is the same number of bits as the underlying hash function, so in both
of these implementations it would be 256 bits of output. In this section, we’ll denote the
number of bits in the hash output as n.

To construct the HMAC algorithm, we first start with a more general version, NMAC:

NMAC(K1, K2,M) = H(K1||H(K2||M))

In words, NMAC concatenates K2 and M , hashes the result, concatenates the result with
K1, and then hashes that result.

Note that NMAC takes two keys, K1 and K2, both of length n (the length of the hash
output). If the underlying hash function H is cryptographic and K1 and K2 are unrelated8,
then NMAC is provably secure.

HMAC is a more specific version of NMAC that only requires one key instead of two unrelated
keys:

HMAC(M,K) = H((K ′ ⊕ opad)||H((K ′ ⊕ ipad)||M))

The HMAC algorithm actually supports a variable-length key K. However, NMAC uses K1

and K2 that are the same length as the hash output n, so we first transform K to be length
n. If K is shorter than n bits, we can pad K with zeros until it is n bits. If K is longer than

8The formal definition of “unrelated” is out of scope for these notes. See this paper to learn more.

CS 161 Notes 32 of 79

http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf

n bits, we can hash K to make it n bits. The transformed n-bit version of K is now denoted
as K ′.

Next, we derive two unrelated keys from K ′. It turns out that XORing K ′ with two different
pads is sufficient to satisfy the definition of “unrelated” used in the NMAC security proof.
The HMAC algorithm uses two hardcoded pads, opad (outer pad) and ipad (inner pad),
to generate two unrelated keys from a single key. The first key is K1 = K ′ ⊕ opad, and
the second key is K2 = K ′ ⊕ ipad. opad is the byte 0x5c repeated until it reaches n bits.
Similarly, ipad is the byte 0x36 repeated until it reaches n bits.9

In words, HMAC takes the key and pads it or hashes it to length n. Then, HMAC takes
the resulting modified key, XORs it with the ipad, concatenates the message, and hashes
the resulting string. Next, HMAC takes the modified key, XORs it with the opad, and then
concatenates it to the previous hash. Hash this final string to get the result.

Because NMAC is provably secure, and HMAC is a special case of NMAC that generates
the two unrelated keys from one key, HMAC is also provably secure. This proof assumes
that the underlying hash is a secure cryptographic hash, which means if you can find a way
to break HMAC (forge a valid HMAC without knowing the key), then you have also broken
the underlying cryptographic hash.

Because of the properties of a cryptographic hash, if you change just a single bit in either the
message or the key, the output will be a completely different, unpredictable value. Someone
who doesn’t know the key won’t be able to generate tags for arbitrary messages. In fact,
they can’t even distinguish the tag for a message from a random value of the same length.

HMAC is also very efficient. The inner hash function call only needs to hash the bits of the
message, plus n bits, and the outer hash function call only needs to hash 2n bits.

8.6 MACs are not confidential
A MAC does not guarantee confidentiality on the message M to which it is applied. In the
examples above, Alice and Bob have been exchanging non-encrypted plaintext messages with
MACs attached to each message. The MACs provide integrity and authenticity, but they do
nothing to hide the contents of the actual message. In general, MACs have no confidentiality
guarantees–given F (K,M), there is no guarantee that the attacker cannot learn something
about M .

As an example, we can construct a valid MAC that guarantees integrity but does not guar-
antee confidentiality. Consider the MAC function F ′ defined as F ′(K,M) = F (K,M)||M .
In words, F ′ contains a valid MAC of the message, concatenated with the message plaintext.
Assuming F is a valid MAC, then F ′ is also valid MAC. An attacker who doesn’t know K
won’t be able to generate F ′(K,M ′) for the attacker’s message M ′, because they won’t be
able to generate F (K,M ′), which is part of F ′(K,M ′). However, F ′ does not provide any
confidentiality on the message–in fact, it leaks the entire message!

9The security proof for HMAC just required that ipad and opad be different by at least one bit but,
showing the paranoia of cryptography engineers, the designers of HMAC chose to make them very different.

CS 161 Notes 33 of 79

There is no notion of “reversing” or “decrypting” a MAC, because both Alice and Bob use
the same algorithm to generate MACs. However, there is nothing that says a MAC algorithm
can’t be reversed if you know the key. For example, with AES-MAC it is clear that if the
message is a single block, you can run the algorithm in reverse to go from the tag to the
message. Depending on the particular MAC algorithm, this notion of reversing a MAC might
also lead to leakage of the original message.

There are some MAC algorithms that don’t leak information about the message because of
the nature of the underlying implementation. For example, if the algorithm directly applies
a block cipher, the block cipher has the property that it does not leak information about the
plaintext. Similarly, HMAC does not leak information about the message, since it maintains
the properties of the cryptographic hash function.

In practice, we usually want to guarantee confidentiality in addition to integrity and au-
thenticity. Next we will see how we can combine encryption schemes with MACs to achieve
this.

8.7 Authenticated Encryption
An authenticated encryption scheme is a scheme that simultaneously guarantees confiden-
tiality and integrity on a message. As you might expect, symmetric-key authenticated en-
cryption modes usually combine a block cipher mode (to guarantee confidentiality) and a
MAC (to guarantee integrity and authenticity).

Suppose we have an IND-CPA secure encryption scheme Enc that guarantees confidentiality,
and an unforgeable MAC scheme MAC that guarantees integrity and authenticity. There
are two main approaches to authenticated encryption: encrypt-then-MAC and MAC-then-
encrypt.

In the encrypt-then-MAC approach, we first encrypt the plaintext, and then produce a MAC
over the ciphertext. In other words, we send the two values 〈EncK1(M),MACK2(EncK1(M))〉.
This approach guarantees ciphertext integrity–an attacker who tampers with the ciphertext
will be detected by the MAC on the ciphertext. This means that we can detect that the
attacker has tampered with the message without decrypting the modified ciphertext. Addi-
tionally, the original message is kept confidential since neither value leaks information about
the plaintext. The MAC value might leak information about the ciphertext, but that’s fine;
we already know that the ciphertext doesn’t leak anything about the plaintext.

In the MAC-then-encrypt approach, we first MAC the message, and then encrypt the message
and the MAC together. In other words, we send the value EncK1(M ||MACK2(M)). Although
both the message and the MAC are kept confidential, this approach does not have ciphertext
integrity, since only the original message was tagged. This means that we’ll only detect if
the message is tampered after we decrypt it. This may not be desirable in some applications,
because you would be running the decryption algorithm on arbitrary attacker inputs.

Although both approaches are theoretically secure if applied correctly, in practice, the MAC-
then-Encrypt approach has been attacked through side channel vectors. In a side channel
attack, improper usage of a cryptographic scheme causes some information to leak through

CS 161 Notes 34 of 79

some other means besides the algorithm itself, such as the amount of computation time taken
or the error messages returned. One example of this attack was a padding oracle attack
against a particular TLS implementation using the MAC-then-encrypt approach. Because
of the possibility of such attacks, encrypt-then-MAC is generally the better approach.

In both approaches, the encryption and MAC functions should use different keys, because
using the same key in an authenticated encryption scheme makes the scheme vulnerable to
a large category of potential attacks. These attacks take advantage of the fact that two
different algorithms are called with the same key, as well as the properties of the particular
encryption and MAC algorithms, to potentially leak information about the original message.
The easiest way to avoid this category of attacks is to simply use different keys for the
encryption and MAC functions.

8.8 AEAD Encryption Modes
There are also some special block cipher operation modes, known as AEAD (Authenticated
Encryption with Additional Data) that, in addition to providing confidentiality like other
appropriate block cipher modes, also provide integrity/authenticity.

The “additional data” component means that the integrity is provided not just over the
encrypted portions of the message but some additional unencrypted data. For example, if
Alice wants to send a message to Bob, she may want to include that the message is ”From
Alice to Bob” in plaintext (for the benefit of the system that routes the message from Alice
to Bob) but also include it in the set of data protected by the authentication.

While powerful, using these modes improperly will lead to catastrophic failure in security,
since a mistake will lead to a loss of both confidentiality and integrity at the same time.

One such mode is called AES-GCM (Galois Counter Mode). The specifics are out of scope
for these notes, but at a high level, AES-GCM is a stream cipher that operates similarly to
AES-CTR (counter) mode. The security properties of AES-GCM are also similar to CTR–in
particular, IV reuse also destroys the security of AES-GCM. Since the built-in MAC in AES-
GCM is also a function of the CTR mode encryption, improper use of AES-GCM causes loss
of both confidentiality and integrity.

Some other modes include CCM mode, CWC mode, and OCB mode, but these are out of
scope for these notes.

CS 161 Notes 35 of 79

9 Pseudorandom Number Generators
9.1 Randomness and entropy
As we’ve seen in the previous sections, cryptography often requires randomness. For example,
symmetric keys are usually randomly-generated bits, and random IVs and nonces are required
to build secure block cipher chaining modes.

In cryptography, when we say “random,” we usually mean “random and unpredictable.“
For example, flipping a biased coin that comes up heads 99% of the time is random, but
you can predict a pattern–for a given coin toss, if you guess heads, it’s very likely you’re
correct. A better source of randomness for cryptographic purposes would be flipping a fair
coin, because the outcome is harder to predict than the outcome of the biased coin flip.
Consider generating a random symmetric key: you would want to use outcomes of the fair
coin to generate the key, because that makes it harder for the attacker to guess your key
than if you had used outcomes of the biased coin to generate the key.

We can formalize this concept of unpredictability by defining entropy, a measure of uncer-
tainty or surprise, for any random event. The biased coin has low entropy because you
expect a given outcome most of the time. The fair coin has high entropy because you are
very uncertain about the outcome. The specifics of entropy are beyond the scope of this
class, but an important note is that the uniform distribution (all outcomes equally likely)
produces the greatest entropy. In cryptography, we generally want randomness with the
most entropy, so ideally, any randomness should be bits drawn from a uniform distribution
(i.e. the outcomes of fair coin tosses).

However, true, unbiased randomness is computationally expensive to generate. True ran-
domness usually requires sampling data from an unpredictable physical process, such as an
unpredictable circuit on a CPU, random noise signals, or the microsecond at which a user
presses a key. These sources may be biased and predictable, making it even more challenging
to generate unbiased randomness.

Instead of using expensive true randomness each time a cryptographic algorithm requires
randomness, we instead use pseudo-randomness. Pseudorandom numbers are generated de-
terministically using an algorithm, but they look random. In particular, a good pseudoran-
dom number algorithm generates bits that are computationally indistinguishable from true
random bits–there is no efficient algorithm that would let an attacker distinguish between
pseudorandom bits and truly random bits.

9.2 Pseudorandom Number Generators (pRNGs)
A pseudorandom number generator (pRNG) is an algorithm that takes a small amount of
truly random bits as input and outputs a long sequence of pseudorandom bits. The initial
truly random input is called the seed.

The pRNG algorithm is deterministic, so anyone who runs the pRNG with the same seed
will see the same pseudorandom output. However, to an attacker who doesn’t know the

CS 161 Notes 36 of 79

seed, the output of a secure pRNG is computationally indistinguishable from true random
bits. A pRNG is not completely indistinguishable from true random bits–given infinite
computational time and power, an attacker can distinguish pRNG output from truly random
output. If the pRNG takes in an n-bit seed as input, the attacker just has to input all 2n

possible seeds and see if any of the 2n outputs matches the bitstring they received. However,
when restricted to any practical computation limit, an attacker has no way of distinguishing
pRNG output from truly random output.

It would be very inefficient if a pRNG only outputted a fixed number of pseudorandom bits
for each truly random input. If this were the case, we would have to generate more true
randomness each time the pRNG output has all been used. Ideally, we would like the pRNG
to take in an initial seed and then be available to generate as many pseudorandom bits as
needed on demand. To achieve this, the pRNG maintains some internal state and updates
the state any time the pRNG generates new bits or receives a seed as input.

Formally, a pRNG is defined by the following three functions:

• Seed(entropy): Take in some initial truly random entropy and initialize the pRNG’s
internal state.

• Reseed(entropy): Take in some additional truly random entropy, updating the pRNG’s
internal state as needed.

• Generate(n): Generate n pseudorandom bits, updating the internal state as needed.
Some pRNGs also support adding additional entropy directly during this step.

9.3 Rollback resistance
In the previous section, we defined a secure pRNG as an algorithm whose output is compu-
tationally indistinguishable from random if the attacker does not know the seed and internal
state. However, this definition does not say anything about the consequences of an attacker
who does manage to compromise the internal state of a secure pRNG.

An additional desirable property of a secure pRNG is rollback resistance. Suppose a pRNG
has been used to generate 100 bits, and an attacker is somehow able to learn the internal
state immediately after bit 100 has been generated. If the pRNG is rollback-resistant, then
the attacker cannot deduce anything about any previously-generated bit. Formally, the
previously-generated output of the pRNG should still be computationally indistinguishable
from random, even if the attacker knows the current internal state of the pRNG.

Not all secure pRNGs are rollback-resistant, but rollback resistance is an important property
for any practical cryptographic pRNG implementation. Consider a cryptosystem that uses
a single pRNG to generate both the secret keys and the IVs (or nonces) for a symmetric
encryption scheme. The pRNG is first used to generate the secret keys, and then used
again to generate the IVs. If this pRNG was not rollback-resistant, then an attacker who
compromises the internal state at this point could learn the value of the secret key.

CS 161 Notes 37 of 79

9.4 HMAC-DRBG
There are many implementations of pRNGs, but one commonly-used pRNG in practice is
HMAC-DRBG10, which uses the security properties of HMAC to build a pRNG.

HMAC-DRBG maintains two values as part of its internal state, K and V . K is used as the
secret key to the HMAC, and V is used as the “message” input to the HMAC.

To generate a block of pseudorandom bits, HMAC-DRBG computes HMAC on the previous
block of pRNG output. This can be repeated to generate as many pseudorandom bits as
needed. Recall that the output of HMAC looks random to an attacker who doesn’t know
the key. As long as we keep the internal state (which includes K) secret, an attacker cannot
distinguish the output of the HMAC from random bits, so the pRNG is secure.

We also use HMAC to update the internal state K and V each time. If additional true
randomness is provided, we add it to the “message” input to HMAC.

Algorithm 1 Generate(n): Generate n pseudorandom bits, with no additional true ran-
dom input.

1: output = ’’

2: while len(output) < n do
3: V = HMAC(K, V)
4: output = output || V
5: end while

6: K = HMAC(K, V || 0x00)
7: V = HMAC(K, V)

8: return output[0:n]

At line 3, we are repeatedly calling HMAC on the previous block of output. The while loop
repeats this process until we have at least n bits of output. Once we have enough output,
we update the internal state with two additional HMAC calls, and then return the first n
bits of pseudorandom output.

Next, let’s see how to seed the pRNG. The seed and reseed algorithms use true randomness
as input to the HMAC, and uses the output of slight variations on the HMAC input to
update K and V .

10DRBG stands for Deterministic Random Bit Generator

CS 161 Notes 38 of 79

Algorithm 2 Seed(s): Take some truly random bits s and initialize the internal state.

1: K = 0
2: V = 0

3: K = HMAC(K, V || 0x00 || s)
4: V = HMAC(K, V)

5: K = HMAC(K, V || 0x01 || s)
6: V = HMAC(K, V)

The reseed algorithm is identical to the seed algorithm, except we don’t need to reset K and
V to 0 (steps 1-2).

Finally, if we want to generate pseudorandom output and add entropy at the same time, we
combine the two algorithms above:

Algorithm 3 Generate(n, s): Generate n pseudorandom bits, with additional true ran-
dom input s.

1: output = ’’

2: while len(output) < n do
3: V = HMAC(K, V)
4: output = output || V
5: end while

6: K = HMAC(K, V || 0x00 || s)
7: V = HMAC(K, V)

8: K = HMAC(K, V || 0x01 || s)
9: V = HMAC(K, V)

10: return output[0:n]

The specific design decisions of HMAC-DRBG, such as why it uses 0x00 and 0x01, are not
so important. The main takeaway is that because HMAC output is indistinguishable from
random, the output of HMAC-DRBG (which is essentially lots of HMAC outputs) is also
indistinguishable from random.

The use of the cryptographic hash function in both the seeding and reseeding algorithms
means that HMAC-DRBG can accept an arbitrary long initial seed. For example, if each bit
of the input seed really only has 0.1 bits of entropy (e.g. because it is a highly biased coin),
using 2560 bits of seed material will leave HMAC-DRBG with 256b of actual entropy for
its internal operations. Furthermore, adding in additional strings that contain no entropy
(such as a string of 0 bits or the number π) doesn’t make the internal state worse.

Additionally, HMAC-DRBG has rollback resistance: if you can compute the previous state
from the current state you have successfully reversed the underlying hash function!

CS 161 Notes 39 of 79

9.5 Stream ciphers
As we’ve seen in the previous section, an attacker without knowledge of the internal state of
a secure, rollback-resistant pRNG cannot predict the pRNG’s past or future output, and the
attacker cannot distinguish the pRNG output from random bits. This sounds very similar to
the properties we want in a random, unpredictable one-time pad. In fact, we can use pRNGs
to generate a one-time pad that we then use for encrypting messages. This encryption scheme
is an example of a class of algorithms known as stream ciphers.

Recall that in block ciphers, we encrypted and decrypted messages by splitting them into
fixed-size blocks. Stream ciphers use a different approach to encryption, in which we encrypt
and decrypt messages as they arrive, one bit at a time. You can imagine a stream cipher
operating on an encrypted file being downloaded from the Internet: as each subsequent bit
is downloaded, the stream cipher can immediately decrypt the bit while waiting for the next
bit to download. This is different from a block cipher, where you might need a block of
bits, several blocks of bits, or the entire message to be downloaded before you can start
decrypting.

A common class of stream cipher algorithms involves outputting an unpredictable stream of
bits, and then using this stream as the key of a one-time pad. In other words, each bit of
the plaintext message is XORed with the corresponding bit in the key stream.

The output of a secure pRNG can be used as the key for this one-time pad scheme. Formally,
in a pRNG-based stream cipher, the secret key is the initial seed used to seed the pRNG.
To encrypt an n-bit message, Alice runs the pRNG until it generates n pseudorandom bits.
Then she XORs the pseudorandom bits with the plaintext message. Since the pRNG can
generate as many bits as needed, this algorithm can encrypt arbitrary-length messages.

To decrypt the message, Bob uses the same secret key to seed the pRNG. Since the pRNG
is deterministic with the same seed, Bob will generate the same pseudorandom bits when
he runs the pRNG. Then Bob XORs the pseudoranom bits with the ciphertext to learn the
original plaintext.

To avoid key reuse, Alice and Bob can both seed the pRNG with a random IV in addition
to their secret key so that the pRNG output is different and unpredictable each time. In
short, the pRNG algorithm is:

• Encryption: Enc(K,M) = 〈IV, PRNG(K, IV)⊕M〉

• Decryption: Dec(K, IV, C2) = PRNG(K, IV)⊕ C2

AES-CTR is effectively a stream cipher. Although technically AES appears to be a pseudo-
random permutation rather than a pseudo-random generator, in practice the results are
similar. As long as the total ciphertext encrypted with a given key is kept to a reasonable
level (264b), the one-time pad output of AES-CTR should be effectively indistinguishable
from pRNG output. Beyond this threshold, there is a significant probability with CTR mode
that there will be two blocks with identical ciphertext, which would leak information that
the underlying plaintext blocks are different.

CS 161 Notes 40 of 79

Although theoretically we could use any cryptographically secure pRNG (like HMAC-DRBG)
as a stream cipher, dedicated stream ciphers (such as the ChaCha20 cipher) have properties
that we would consider a disadvantage in a secure pRNG but are actually advantages for
stream ciphers. In particular, both AES-CTR mode encryption and ChaCha20 include a
counter value in the computation of the stream.

One desirable consequence of including a counter is the ability to encrypt or decrypt an
arbitrary point in the message without starting from the beginning. If you have a 1 terabyte
file encrypted using either AES-CTR mode or ChaCha20 and you wish to read just the last
bytes, you can set the counter to the appropriate point and just decrypt the last bytes, while
if you used HMAC-DRBG as the stream cipher, you would need to start at the beginning
of the message and compute 1 terabytes of HMAC-DRBG output before you could read the
end of the file.11

11This use of a counter value means that if you view it as a pRNG, AES-CTR and ChaCha20 lack rollback
resistance as the key and counter are the internal state. But on the other hand, it is this ability to rollback
and jump-forward into the output space that makes them more useful as stream ciphers.

CS 161 Notes 41 of 79

10 Diffie-Hellman key exchange
In the previous sections, we discussed symmetric-key schemes such as block ciphers and
MACs. For these schemes to work, we assumed that Alice and Bob both share a secret key
that no one else knows. But how would they be able to exchange a secret key if they can
only communicate through an insecure channel? It turns out there is a clever way to do it,
first discovered by Whit Diffie and Martin Hellman in the 1970s.

The goal of Diffie-Hellman is usually to create an ephemeral key. An ephemeral key is used
for some series of encryptions and decryptions and is discarded once it is no longer needed.
Thus Diffie-Hellman is effectively a way for two parties to agree on a random value in the
face of an eavesdropper.

10.1 Diffie-Hellman intuition
A useful analogy to gain some intuition about Diffie-Hellman key exchange is to think about
colors. Alice and Bob want to both share a secret color of paint, but Eve can see any paint
being exchanged between Alice and Bob. It doesn’t matter what the secret color is, as long
as only Alice and Bob know it.

Alice and Bob each start by deciding on a secret color–for example, Alice generates amber
and Bob generates blue. If Eve wasn’t present, Alice and Bob could just send their secret
colors to each other and mix the two secret colors together to get the final color. However,
since Eve can see any colors sent between Alice and Bob, they must somehow hide their
colors when exchanging them.

To hide their secret colors, Alice and Bob agree on a publicly-known common paint color–in
this example, green. They each take their secret color, mix it with the common paint color,
and then send it over the insecure channel. Alice sends a green-amber mixture to Bob, and
Bob sends a green-blue mixture to Alice. Here we’re assuming that given a paint mixture,
Eve cannot separate the mixture into its original colors.

At this point, Alice and Bob have each other’s secret colors, mixed with the common color.
All that’s left is to add their own secret. Alice receives the green-blue mixture from Bob
and adds her secret amber to get green-blue-amber. Bob receives the green-amber mixture
from Alice and adds his secret blue to get green-amber-blue. Alice and Bob now both have
a shared secret color (green-amber-blue).

The only colors exchanged over the insecure channel were the secret mixtures green-amber
and green-blue. Given green-amber, Eve would need to add blue to get the secret, but
she doesn’t know Bob’s secret color, because it wasn’t sent over the channel, and she can’t
separate the green-blue mixture. Eve could also try mixing the green-amber and green-blue
mixtures, but you can imagine this wouldn’t result in exactly the same secret, since there
would be too much green in the mix. The result would be more like green-amber-green-blue
than green-amber-blue.

CS 161 Notes 42 of 79

10.2 Discrete logarithm problem
The secret exchange in the color analogy relied on the fact that mixing two colors is easy,
but separating a mixture of two colors is practically impossible. It turns out that there is
a mathematical equivalent of this. We call these one-way functions : a function f such that
given x, it is easy to compute f(x), but given y, it is practically impossible to find a value
x such that f(x) = y.

A one-way function is also sometimes described as the computational equivalent of a process
that turns a cow into hamburger: given the cow, you can produce hamburger, but there’s
no way to restore the original cow from the hamburger.

There are many functions believed to be one-way functions. The simplest one is exponentia-
tion modulo a prime: f(x) = gx (mod p), where p is a large prime and g is a specially-chosen
generator12.

Given x, it is easy to calculate f(x) (you may recall the repeated squaring algorithm from
CS 70). However, given f(x) = gx (mod p), there is no known efficient algorithm to solve for
x. This is known as the discrete logarithm problem, and it is believed to be computationally
hard to solve.

Using the hardness of the discrete log problem and the analogy from above, we are now
ready to construct the Diffie-Hellman key exchange protocol.

10.3 Diffie-Hellman protocol
In high-level terms, the Diffie-Hellman key exchange works like this.

Alice and Bob first establish the public parameters p and g. Remember that p is a large
prime and g is a generator in the range 1 < g < p− 1. For instance, Alice could pick p and
g and then announce it publicly to Bob. Today, g and p are often hardcoded or defined in a
standard so they don’t need to be chosen each time. These values don’t need to be specific
to Alice or Bob in any way, and they’re not secret.

Then, Alice picks a secret value a at random from the set {0, 1, . . . , p−2}, and she computes
A = ga mod p. At the same time, Bob randomly picks a secret value b and computes
B = gb mod p.

Now Alice announces the value A (keeping a secret), and Bob announces B (keeping b secret).
Alice uses her knowledge of B and a to compute

S = Ba = (gb)a = gba (mod p).

Symmetrically, Bob uses his knowledge of A and b to compute

S = Ab = (ga)b = gab (mod p).

12You don’t need to worry about how to choose g, just know that it satisfies some special number theory
properties. In short, g must satisfy the following properties: 1 < g < p−1, and there exists a k where gk = a
for all 1 ≤ a ≤ p− 1.

CS 161 Notes 43 of 79

Note that gba = gab (mod p), so both Alice and Bob end up with the same result, S.

Finally, Alice and Bob can use S as a shared key for a symmetric-key cryptosystem (in
practice, we would apply some hash function to S first and use the result as our shared key,
for technical reasons).

The amazing thing is that Alice and Bob’s conversation is entirely public, and from this
public conversation, they both learn this secret value S—yet eavesdroppers who hear their
entire conversation cannot learn S.

As far as we know, there is no efficient algorithm to deduce S = gab mod p from the values
Eve sees, namely A = ga mod p, B = gb mod p, g, and p. The hardness of this problem
is closely related to the discrete log problem discussed above. In particular, the fastest
known algorithms for solving this problem take 2cn1/3(logn)2/3 time, if p is a n-bit prime. For
n = 2048, these algorithms are far too slow to allow reasonable attacks.

Here is how this applies to secure communication among computers. In a computer network,
each participant could pick a secret value x, compute X = gx mod p, and publish X for all
time. Then any pair of participants who want to hold a conversation could look up each
other’s public value and use the Diffie-Hellman scheme to agree on a secret key known only
to those two parties. This means that the work of picking p, g, x, and X can be done in
advance, and each time a new pair of parties want to communicate, they each perform only
one modular exponentiation. Thus, this can be an efficient way to set up shared keys.

Here is a summary of Diffie-Hellman key exchange:

• System parameters: a 2048-bit prime p, a value g in the range 2 . . . p− 2. Both are
arbitrary, fixed, and public.

• Key agreement protocol: Alice randomly picks a in the range 0 . . . p− 2 and sends
A = ga mod p to Bob. Bob randomly picks b in the range 0 . . . p − 2 and sends
B = gb mod p to Alice. Alice computes K = Ba mod p. Bob computes K = Ab mod p.
Alice and Bob both end up with the same random secret key K, yet as far as we know
no eavesdropper can recover K in any reasonable amount of time.

10.4 Elliptic-curve Diffie-Hellman
In the section above, we used the discrete log problem to construct a Diffie-Hellman protocol,
but we can generalize Diffie-Hellman key exchange to other one-way functions. One com-
monly used variant of Diffie-Hellman relies on the elliptic curve discrete logarithm problem,
which is based on the math around elliptic curves instead of modular arithmetic. Although
the underlying number theory is more complicated, elliptic-curve Diffie-Hellman can use
smaller keys than modular arithmetic Diffie-Hellman and still provide the same security, so
it has many useful applications.

For this class, you don’t need to understand the underlying math that makes elliptic-curve
Diffie-Hellman work, but you should know that the idea behind the protocol is the same.

CS 161 Notes 44 of 79

https://en.wikipedia.org/wiki/Elliptic_curve

Alice and Bob start with a publicly known point on the elliptic curve G. Alice chooses a
secret integer a and Bob chooses a secret integer b.

Alice computes A = a · G (this is a point on the curve A, obtained by adding the point G
to itself a times), and Bob computes B = b ·G. Alice sends A to Bob, and Bob sends B to
Alice.

Alice computes
S = a ·B = a · b ·G

and Bob computes
S = b · A = b · a ·G

Because of the properties of the elliptic curve, Alice and Bob will derive the same point S,
so they now have a shared secret. Also, the elliptic-curve Diffie-Hellman problem states that
given A = a ·G and B = b ·G, there is no known efficient method for Eve to calculate S.

10.5 Difficulty in Bits
It is generally believed that the discrete log problem is hard, but how hard? In practice,
it is generally believed that computing the discrete log modulo a 2048b prime, computing
the elliptic curve discrete log on a 256b curve, and brute forcing a 128b symmetric key
algorithm are all roughly the same difficulty. (Brute-forcing the 128b key is believed to be
slightly harder than the other two.)

Thus, if we are using Diffie-Hellman key exchange with other cryptoschemes, we try to relate
the difficulty of the schemes so that it is equally difficult for an attacker to break any scheme.
For example, 128b AES tends to be used with SHA-256 and either 256b elliptic curves or
2048b primes for Diffie-Hellman. Similarly, for top-secret use, the NSA uses 256b AES, 384b
Elliptic Curves, SHA-384, and 3096b Diffie-Hellman and RSA.

10.6 Attacks on Diffie-Hellman
As we’ve seen, Diffie-Hellman is secure against an eavesdropper Eve, who observes the mes-
sages sent between Alice and Bob, but does not tamper with them. What if we replace Eve
with Mallory, an active adversary (man-in-the-middle) who can tamper with messages?

It turns out the Diffie-Hellman key exchange protocol is only secure against a passive adver-
sary and not an active adversary. If Mallory can tamper with the communication between
Alice and Bob, she can fool them into thinking that they’ve agreed with a shared key, when
they have actually generated two different keys that Mallory knows.

The following figure demonstrates how an active attacker (Mallory) can agree on a key
(K1 = gam (mod p)) with Alice and another key (K2 = gbm (mod p)) with Bob in order to
man-in-the-middle (MITM) their communications.

When Alice sends ga (mod p) to Bob, Mallory intercepts the message and replaces it with gm

(mod p), where m is Mallory’s secret. Bob now receives gm (mod p) instead of ga (mod p).

CS 161 Notes 45 of 79

Now, when Bob wants to calculate his shared key, he will calculate K = Ab (mod p), where
A is the value he received from Alice. Since he received a tampered value from Mallory, Bob
will actually calculate K = (gm)b = gmb (mod p).

Likewise, when Bob sends gb (mod p) to Alice, Mallory intercepts the message and replaces
it with gm (mod p). Alice receives gm (mod p). To calculate her shared key, she calculates
K = Ba (mod p), where B is the value she received from Bob. Since Alice received a
tampered value, she will actually calculate K = (gm)a = gma (mod p).

After the exchange, Alice thinks the shared key is gma (mod p) and Bob thinks the shared
key is gmb (mod p). They no longer have the same shared secret.

Even worse, Mallory knows both of these values too. Mallory intercepted Alice sending ga

(mod p), which means Mallory knows the value of ga (mod p). She also knows her own
chosen secret m. Thus she can calculate (ga)m = gam (mod p), which is what Alice thinks
her shared secret is. Likewise, Mallory intercepted gb (mod p) from Bob and can calculate
(gb)m = gbm (mod p), which is what Bob thinks his shared secret is.

If Alice and Bob fall victim to this attack, Mallory can now decrypt any messages sent
from Alice with Alice’s key gma (mod p), make any changes to the message, re-encrypt the
message with Bob’s key gmb (mod p), and send it to Bob. In other words, Mallory would
pretend to Alice that she is Bob, and pretend to Bob that she is Alice. This would not only
allow Mallory to eavesdrop on the entire conversation but also make changes to the messages
without Alice and Bob ever noticing that they are under attack.

The main reason why the Diffie-Hellman protocol is vulnerable to this attack is that the
messages exchanged between Alice and Bob have no integrity or authenticity. To defend
against this attack, Alice and Bob will need to additionally use a cryptoscheme that provides
integrity and authenticity, such as digital signatures. If the messages sent during the Diffie-
Hellman exchange have integrity and authenticity, then Alice and Bob would be able to
detect Mallory’s tampering with the messages.

CS 161 Notes 46 of 79

11 Public-Key (Asymmetric) Encryption

11.1 Overview
Previously we saw symmetric-key encryption, where Alice and Bob share a secret key K
and use the same key to encrypt and decrypt messages. However, symmetric-key cryptog-
raphy can be inconvenient to use, because it requires Alice and Bob to coordinate somehow
and establish the shared secret key. Asymmetric cryptography, also known as public-key
cryptography, is designed to address this problem.

In a public-key cryptosystem, the recipient Bob has a publicly available key, his public key,
that everyone can access. When Alice wishes to send him a message, she uses his public key
to encrypt her message. Bob also has a secret key, his private key, that lets him decrypt
these messages. Bob publishes his public key but does not tell anyone his private key (not
even Alice).

Public-key cryptography provides a nice way to help with the key management problem.
Alice can pick a secret key K for some symmetric-key cryptosystem, then encrypt K under
Bob’s public key and send Bob the resulting ciphertext. Bob can decrypt using his private key
and recover K. Then Alice and Bob can communicate using a symmetric-key cryptosystem,
with K as their shared key, from there on.

11.2 Trapdoor One-way Functions
Public-key cryptography relies on a close variant of the one-way function. Recall from the
previous section that a one-way function is a function f such that given x, it is easy to
compute f(x), but given y, it is hard to find a value x such that f(x) = y.

A trapdoor one-way function is a function f that is one-way, but also has a special backdoor
that enables someone who knows the backdoor to invert the function. As before, given x, it
is easy to compute f(x), but given only y, it is hard to find a value x such that f(x) = y.
However, given both y and the special backdoor K, it is now easy to compute x such that
f(x) = y.

A trapdoor one-way function can be used to construct a public encryption scheme as follows.
Bob has a public key PK and a secret key SK. He distributes PK to everyone, but does not
share SK with anyone. We will use the trapdoor one-way function f(x) as the encryption
function.

Given the public key PK and a plaintext message x, it is computationally easy to compute
the encryption of the message: y = f(x).

Given a ciphertext y and only the public key PK, it is hard to find the plaintext message x
where f(x) = y. However, given ciphertext y and the secret key SK, it becomes computa-
tionally easy to find the plaintext message x such that y = f(x), i.e., it is easy to compute
f−1(y).

We can view the private key as “unlocking” the trapdoor. Given the private key SK, it

CS 161 Notes 47 of 79

becomes easy to compute the decryption f−1, and it remains easy to compute the encryption
f .

Here are two examples of trapdoor functions that will help us build public encryption
schemes:

• RSA Hardness : Suppose n = pq, i.e. n is the product of two large primes p and q.
Given c = me (mod n) and e, it is computationally hard to find m. However, with the
factorization of n (i.e. p or q), it becomes easy to find m.

• Discrete log problem: Suppose p is a large prime and g is a generator. Given g, p,
A = ga (mod p), and B = gb (mod p), it is computationally hard to find gab (mod p).
However, with a or b, it becomes easy to find gab (mod p).

11.3 RSA Encryption
Under construction

For now, you can refer to these notes from CS 70 for a detailed proof of RSA encryption.
For this class, you won’t need to remember the proof of why RSA works. All you need
to remember is that we use the public key to encrypt messages, we use the corresponding
private key to decrypt messages, and an attacker cannot break RSA encryption unless they
can factor large primes, which is believed to be hard.

There is a tricky flaw in the RSA scheme described in the CS 70 notes. The scheme is
deterministic, so it is not IND-CPA secure. Sending the same message multiple times causes
information leakage, because an adversary can see when the same message is sent. This
basic variant of RSA might work for encrypting “random” messages, but it is not IND-CPA
secure. As a result, we have to add some randomness to make the RSA scheme resistant to
information leakage.

RSA introduces randomness into the scheme through a padding mode. Despite the name,
RSA padding modes are more similar to the IVs in block cipher modes than the padding in
block cipher modes. Unlike block cipher padding, public-key padding is not a deterministic
algorithm for extending a message. Instead, public-key padding is a tool for mixing in some
randomness so that the ciphertext output “looks random,” but can still be decrypted to
retrieve the original plaintext.

One common padding scheme is OAEP (Optimal Asymmetric Encryption Padding). This
scheme effectively generates a random symmetric key, uses the random key to scramble the
message, and encrypts both the scrambled message and the random key. To recover the
original message, the attacker has to recover both the scrambled message and the random
key in order to reverse the scrambling process.

11.4 El Gamal encryption
The Diffie-Hellman protocol doesn’t quite deliver public-key encryption directly. It allows
Alice and Bob to agree on a shared secret that they could use as a symmetric key, but

CS 161 Notes 48 of 79

http://www.eecs70.org/static/notes/n7.pdf

it doesn’t let Alice and Bob control what the shared secret is. For example, in the Diffie-
Hellman protocol we saw, where Alice and Bob each choose random secrets, the shared secret
is also a random value. Diffie-Hellman on its own does not let Alice and Bob send encrypted
messages to each other. However, there is a slight variation on Diffie-Hellman that would
allow Alice and Bob to exchange encrypted messages.

In 1985, a cryptographer by the name of Taher Elgamal invented a public-key encryption
algorithm based on Diffie-Hellman. We will present a simplified form of El Gamal encryption
scheme. El Gamal encryption works as follows.

The public system parameters are a large prime p and a value g satisfying 1 < g < p − 1.
Bob chooses a random value b (satisfying 0 ≤ b ≤ p−2) and computes B = gb mod p. Bob’s
public key is B, and his private key is b. Bob publishes B to the world, and keeps b secret.

Now, suppose Alice has a message m (in the range 1 . . . p−1) she wants to send to Bob, and
suppose Alice knows that Bob’s public key is B. To encrypt the message m to Bob, Alice
picks a random value r (in the range 0 . . . p− 2), and forms the ciphertext

(gr mod p,m×Br mod p).

Note that the ciphertext is a pair of numbers, each number in the range 0 . . . p− 1.

How does Bob decrypt? Well, let’s say that Bob receives a ciphertext of the form (R, S). To
decrypt it, Bob computes

R−b × S mod p,

and the result is the message m Alice sent him.

Why does this decryption procedure work? If R = gr mod p and S = m × Br mod p (as
should be the case if Alice encrypted the message m properly), then

R−b × S = (gr)−b × (m×Br) = g−rb ×m× gbr = m (mod p).

If you squint your eyes just right, you might notice that El Gamal encryption is basically
Diffie-Hellman, tweaked slightly. It’s a Diffie-Hellman key exchange, where Bob uses his
long-term public key B and where Alice uses a fresh new public key R = gr mod p chosen
anew just for this exchange. They derive a shared key K = grb = Br = Rb (mod p). Then,
Alice encrypts her message m by multiplying it by the shared key K modulo p.

That last step is in effect a funny kind of one-time pad, where we use multiplication modulo
p instead of xor: here K is the key material for the one-time pad, and m is the message,
and the ciphertext is S = m × K = m × Br (mod p). Since Alice chooses a new value r
independently for each message she encrypts, we can see that the key material is indeed
used only once. And a one-time pad using modular multiplication is just as secure as xor,
for essentially the same reason that a one-time pad with xor is secure: given any ciphertext
S and a hypothesized message m, there is exactly one key K that is consistent with this
hypothesis (i.e., exactly one value of K satisfying S = m×K mod p).

Another way you can view El Gamal is using the discrete log trapdoor one-way function
defined above: Alice encrypts the message with Br = gbr (mod p). Given only g, p, R = gr

CS 161 Notes 49 of 79

(mod p), and B = gb (mod p), it is hard for an attacker to learn g−br (mod p) and decrypt
the message. However, with Bob’s secret key b, Bob can easily calculate g−br (mod p) and
decrypt the message.

Note that for technical reasons that we won’t go into, this simplified El Gamal scheme is
actually not semantically secure. With some tweaks, the scheme can be made semantically
secure. Interested readers can read more at this link.

Here is a summary of El Gamal encryption:

• System parameters: a 2048-bit prime p, and a value g in the range 2 . . . p− 2. Both
are arbitrary, fixed, and public.

• Key generation: Bob picks b in the range 0 . . . p − 2 randomly, and computes B =
gb mod p. His public key is B and his private key is b.

• Encryption: EB(m) = (gr mod p,m × Br mod p) where r is chosen randomly from
0 . . . p− 2.

• Decryption: Db(R, S) = R−b × S mod p.

11.5 Public Key Distribution
This all sounds great—almost too good to be true. We have a way for a pair of strangers who
have never met each other in person to communicate securely with each other. Unfortunately,
it is indeed too good to be true. There is a slight catch. The catch is that if Alice and
Bob want to communicate securely using these public-key methods, they need some way to
securely learn each others’ public key. The algorithms presented here don’t help Alice figure
out what is Bob’s public key; she’s on her own for that.

You might think all Bob needs to do is broadcast his public key, for Alice’s benefit. However,
that’s not secure against active attacks. Attila the attacker could broadcast his own public
key, pretending to be Bob: he could send a spoofed broadcast message that appears to be
from Bob, but that contains a public key that Attila generated. If Alice trustingly uses that
public key to encrypt messages to Bob, then Attila will be able to intercept Alice’s encrypted
messages and decrypt them using the private key Attila chose.

What this illustrates is that Alice needs a way to obtain Bob’s public key through some
channel that she is confident cannot be tampered with. That channel does not need to
protect the confidentiality of Bob’s public key, but it does need to ensure the integrity of
Bob’s public key. It’s a bit tricky to achieve this.

One possibility is for Alice and Bob to meet in person, in advance, and exchange public keys.
Some computer security conferences have “key-signing parties” where like-minded security
folks do just that. In a similar vein, some cryptographers print their public key on their
business cards. However, this still requires Alice and Bob to meet in person in advance. Can
we do any better? We’ll soon see some methods that help somewhat with that problem.

CS 161 Notes 50 of 79

http://crypto.stanford.edu/~dabo/abstracts/DDH.html

11.6 Session Keys
There is a problem with public key: it is slow. It is very, very slow. When encrypting a
single message with a 2048b RSA key, the RSA algorithm requires exponentiation of a 2048b
number to a 2048b power, modulo a 2048b number. Additionally, some public key schemes
only really work to encrypt “random” messages. For example, RSA without OAEP leaks
when the same message is sent twice, so it is only secure if every message sent consists of
random bits. In the simplified El Gamal scheme shown in these notes, it is easy for an
attacker to substitute the message M ′ = 2M . If the messages have meaning, this can be a
problem.

Because public key schemes are expensive and difficult to make IND-CPA secure, we tend
to only use public key cryptography to distribute one or more session keys. Session keys are
the keys used to actually encrypt and authenticate the message. To send a message, Alice
first generates a random set of session keys. Often, we generate several different session keys
for different purposes. For example, we may generate one key for encryption algorithms and
another key for MAC algorithms. We may also generate one key to encrypt messages from
Alice to Bob, and another key to encrypt messages from Bob to Alice. (If we need different
keys for each message direction and different keys for encryption and MAC, we would need a
total of four symmetric keys.) Alice then encrypts the message using a symmetric algorithm
with the session keys (such as AES-128-CBC-HMAC-SHA-256 13) and encrypts the random
session keys with Bob’s public key. When he receives the ciphertext, Bob first decrypts the
session keys and then uses the session keys to decrypt the original message.

13That is, using AES with 128b keys in CBC mode and then using HMAC with SHA-256 for integrity

CS 161 Notes 51 of 79

12 Digital Signatures
We can use the ideas from public-key encryption to build asymmetric cryptographic schemes
that guarantee integrity and authentication too. In this section, we will define digital sig-
natures, which are essentially the public-key version of MACs, and show how they can help
guarantee integrity and authentication.

12.1 Digital signature properties
Recall that in public-key encryption, anyone could use Bob’s public key to encrypt a message
and send it to him, but only Bob could use his secret key to decrypt the message. However,
the situation is different for digital signatures. It would not really make sense if everyone
could generate a signature on a message and only Bob could verify it. If anyone could generate
a signature with a public key, what’s stopping an attacker from generating a malicious
message with a valid signature?

Instead, we want the reverse: only Bob can generate a signature on a message, and everyone
else can verify the signature to confirm that the message came from Bob and has not been
tampered with.

In a digital signature scheme, Bob generates a public key (also known as a verification key)
and a private key (also known as a signing key). Bob distributes his public verification key
to everyone, but keeps his signing key secret. When Bob wants to send a message, he uses his
secret signing key to generate a signature on the message. When Alice receives the message,
she can use Bob’s public verification key to check that the signature is valid and confirm
that the message is untampered and actually from Bob.

Mathematically, a digital signature scheme consists of three algorithms:

• Key generation: There is a randomized algorithm KeyGen that outputs a matching
public key and private key: (PK, SK) = KeyGen(). Each invocation of KeyGen
produces a new keypair.

• Signing: There is a signing algorithm Sign: S = Sign(SK,M) is the signature on
the message M (with private key SK).

• Verification: There is a verification algorithm Verify, where Verify(PK,M, S)
returns true if S is a valid signature on M (with public key PK) or false if not.

If PK, SK are a matching pair of private and public keys (i.e., they were output by some
call to KeyGen), and if S = Sign(SK,M), then Verify(PK,M, S) = true.

12.2 RSA Signatures: High-level Outline
At a high level, the RSA signature scheme works like this. It specifies a trapdoor one-way
function F . The public key of the signature scheme is the public key U of the trapdoor
function, and the private key of the signature scheme is the private key K of the trapdoor
function. We also need a one-way function H, with no trapdoor; we typically let H be some

CS 161 Notes 52 of 79

cryptographic hash function, per § 7. The function H is standardized and described in some
public specification, so we can assume that everyone knows how to compute H, but no one
knows how to invert it.

We define a signature on a message M as a value S that satisfies the following equation:

H(M) = FU(S).

Note that given a message M , an alleged signature S, and a public key U , we can verify
whether it satisfies the above equation. This makes it possible to verify the validity of
signatures.

How does the signer sign messages? It turns out that the trapdoor to F , i.e., the private key
K, lets us find solutions to the above equation. Given a message M and the private key K,
the signer can first compute y = H(M), then find a value S such that FU(S) = y. In other
words, the signer computes S = F−1(H(M)); that’s the signature on M . This is easy to do
for someone who knows the private key K, because K lets us invert the function F , but it
is hard to do for anyone who does not know K. Consequently, anyone who has the private
key can sign messages.

For someone who does not know the private key K, there is no easy way to find a message
M and a valid signature S on it. For instance, an attacker could pick a message M , compute
H(M), but then the attacker would be unable to compute F−1(H(M)), because the attacker
does not know the trapdoor for the one-way function F . Similarly, an attacker could pick a
signature S and compute y = F (S), but then the attacker would be unable to find a message
M satisfying H(M) = y, since H is one-way.

This is the general idea underpinning the RSA signature scheme. Now let’s look at how to
build a trapdoor one-way function, which is the key idea needed to make this all work.

12.3 Number Theory Background
Here are some basic facts from number theory, which will be useful in deriving RSA signa-
tures. As previously discussed in lecture, we use ϕ(n) to denote Euler’s totient function of
n: the number of positive integers less than n that share no common factor with n.

Fact 1 If gcd(x, n) = 1, then xϕ(n) = 1 (mod n). (“Euler’s theorem.”)

Fact 2 If p and q are two different odd primes, then ϕ(pq) = (p− 1)(q − 1).

Fact 3 If p = 2 (mod 3) and q = 2 (mod 3), then there exists a number d satisfying 3d = 1
(mod ϕ(pq)), and this number d can be efficiently computed given ϕ(pq).

Let’s assume that p and q are two different odd primes, that p = 2 (mod 3) and q = 2
(mod 3), and that n = pq.14 Let d be the positive integer promised to exist by Fact 3. As a
consequence of Facts 2 and 3, we can efficiently compute d given knowledge of p and q.

14Why do we pick those particular conditions on p and q? Because then ϕ(pq) = (p − 1)(q − 1) will not
be a multiple of 3, which is going to allow us to have unique cube roots.

CS 161 Notes 53 of 79

Theorem 1 With notation as above, define functions F,G by F (x) = x3 mod n and G(x) =
xd mod n. Then G(F (x)) = x for every x satisfying gcd(x, n) = 1.

Proof: By Fact 3, 3d = 1 + kϕ(n) for some integer k. Now applying Fact 1, we find

G(F (x)) = (x3)d = x3d = x1+kϕ(n) = x1 · (xϕ(n))k = x · 1k = x (mod n).

The theorem follows.

If the primes p, q are chosen to be large enough—say, 1024-bit primes—then it is believed
to be computationally infeasible to recover p and q from n. In other words, in these circum-
stances it is believed hard to factor the integer n = pq. It is also believed to be hard to
recover d from n. And, given knowledge of only n (but not d or p, q), it is believed to be
computationally infeasible to compute the function G. The security of RSA will rely upon
this hardness assumption.

12.4 RSA Signatures
We’re now ready to describe the RSA signature scheme. The idea is that the function
F defined in Theorem 1 will be our trapdoor one-way function. The public key is the
number n, and the private key is the number d. Given the public key n and a number x,
anyone can compute F (x) = x3 mod n. As mentioned before, F is (believed) one-way: given
y = x3 mod n, there is no known way to recover x in any reasonable amount of computing
time. However, we can see that the private key d provides a trapdoor: given d and y, we can
compute x = G(y) = yd mod n. The intuition underlying this trapdoor function is simple:
anyone can cube a number modulo n, but computing cube roots modulo n is believed to be
hard if you don’t know the factorization of n.

We then apply this trapdoor one-way function to the basic approach outlined earlier. Thus,
a signature on message M is a value S satisfying

H(M) = S3 mod n.

The RSA signature scheme is defined by the following three algorithms:

• Key generation: We can pick a pair of random 1024-bit primes p, q that are both
2 mod 3. Then the public key is n = pq, and the private key is the value of d given by
Fact 3 (it can be computed efficiently using the extended Euclidean algorithm).

• Signing: The signing algorithm is given by

Signd(M) = H(M)d mod n.

• Verification: The verification algorithm Verify is given by

Verifyn(M,S) =

{
true if H(M) = S3 mod n,

false otherwise.

CS 161 Notes 54 of 79

Theorem 1 ensures the correctness of the verification algorithm, i.e., that
Verifyn(M,Signd(M)) = true.

A quick reminder: in these notes we’re developing the conceptual basis underlying MAC
and digital signature algorithms that are widely used in practice, but again don’t try to
implement them yourself based upon just this discussion! We’ve omitted some technical
details that do not change the big picture, but that are essential for security in practice. For
your actual systems, use a reputable crypto library!

12.5 Definition of Security for Digital Signatures
Finally, let’s outline a formal definition of what we mean when we say that a digital signature
scheme is secure. The approach is very similar to what we saw for MACs.

We imagine a game played between Georgia (the adversary) and Reginald (the referee).
Initially, Reginald runs KeyGen to get a keypair 〈K,U〉. Reginald sends the public key U
to Georgia and keeps the private key K to himself. In each round of the game, Georgia may
query Reginald with a message Mi; Reginald responds with Si = SignK(Mi). At any point,
Georgia can yell “Bingo!” and output a pair 〈M,S〉. If this pair satisfies VerifyU(M,S) =
true, and if Reginald has not been previously queried with the message M , then Georgia
wins the game: she has forged a signature. Otherwise, Georgia loses.

If Georgia has any strategy to successfully forge a signature with non-negligible probability
(say, with success probability at least 1/240), given a generous amount of computation time
(say, 280 steps of computation) and any reasonable number of rounds of the game (say, 240

rounds), then we declare the digital signature scheme insecure. Otherwise, we declare it
secure.

This is a very stringent definition of security, because it declares the signature scheme broken
if Georgia can successfully forge a signature on any message of her choice, even after tricking
Alice into signing many messages of Georgia’s choice. Nonetheless, modern digital signa-
ture algorithms—such as the RSA signature scheme—are believed to meet this definition of
security.

Note however that the security of signatures do rely on the underlying hash function. Signa-
tures have been broken in the past by taking advantage of the ability to create hash collisions
when the hash function, not the public key algorithm, is compromised.

CS 161 Notes 55 of 79

13 Certificates
So far we’ve seen powerful techniques for securing communication such that the only in-
formation we must carefully protect regards “keys” of various sorts. Given the success of
cryptography in general, arguably the biggest challenge remaining for its effective use con-
cerns exactly those keys, and how to manage them. For instance, how does Alice find out
Bob’s public key? Does it matter?

13.1 Man-in-the-middle Attacks
Suppose Alice wants to communicate securely with Bob over an insecure communication
channel, but she doesn’t know his public key (and he doesn’t know hers). A naive strategy
is that she could just send Bob a message asking him to send his public key, and accept
whatever response she gets back (over the insecure communication channel). Alice would
then encrypt her message using the public key she received in this way.

This naive approach is insecure. An active attacker (Mallory, in our usual terminology) could
tamper with Bob’s response, replacing the public key in Bob’s response with the attacker’s
public key. When Alice encrypts her message, she’ll be encrypting it under Mallory’s public
key, not Bob’s public key. When Alice transmits the resulting ciphertext over the insecure
communication channel, Mallory can observe the ciphertext, decrypt it with his private key,
and learn the secret message that Alice was trying to send to Bob.

You might think that Bob could detect this attack when he receives a ciphertext that he
is unable to decrypt using his own private key. However, an active attacker can prevent
Bob from noticing the attack. After decrypting the ciphertext Alice sent and learning the
secret message that Alice wanted to send, Mallory can re-encrypt Alice’s message under
Bob’s public key, though not before possibly tampering with Alice’s packet to replace her
ciphertext with new ciphertext of Mallory’s choosing. In this way, neither Alice nor Bob
would have any idea that something has gone wrong. This allows an active attacker to spy
on—and alter—Alice’s secret messages to Bob, without breaking any of the cryptography.

If Alice and Bob are having a two-way conversation, and they both exchange their public
keys over an insecure communication channel, then Mallory can mount a similar attack in
both directions. As a result, Mallory will get to observe all of the secret messages that Alice
and Bob send to each other, but neither Alice nor Bob will have any idea that something has
gone wrong. This is known as a “man-in-the-middle” (MITM) attack because the attacker
interposes between Alice and Bob.

Man-in-the-middle attacks were possible in this example because Alice did not have any
way of authenticating Bob’s alleged public key. The general strategy for preventing MITM
attacks is to ensure that every participant can verify the authenticity of other people’s public
keys. But how do we do that, specifically? We’ll look next at several possible approaches to
secure key management.

CS 161 Notes 56 of 79

13.2 Trusted Directory Service
One natural approach to this key management problem is to use a trusted directory service:
some organization that maintains an association between the name of each participant and
their public key. Suppose everyone trusts Dirk the Director to maintain this association.
Then any time Alice wants to communicate with someone, say Bob, she can contact Dirk to
ask him for Bob’s public key. This is only safe if Alice trusts Dirk to respond correctly to
those queries (e.g., not to lie to her, and to avoid being fooled by imposters pretending to
be Bob): if Dirk is malicious or incompetent, Alice’s security can be compromised.

On first thought, it sounds like a trusted directory service doesn’t help, because it just
pushes the problem around. If Alice communicates with the trusted directory service over
an insecure communication channel, the entire scheme is insecure, because an active attacker
can tamper with messages involving the directory service. To protect against this threat,
Alice needs to know the directory service’s public key, but where does she get that from?
One potential answer might be to hardcode the public key of the directory service in the
source code of all applications that rely upon the directory service. So this objection can be
overcome.

A trusted directory service might sound like an appealing solution, but it has a number of
shortcomings:

• Trust: It requires complete trust in the trusted directory service. Another way of
putting this is that everyone’s security is contingent upon the correct and honest op-
eration of the directory service.

• Scalability: The directory service becomes a bottleneck. Everyone has to contact the
directory service at the beginning of any communication with anyone new, so the
directory service is going to be getting a lot of requests. It had better be able to
answer requests very quickly, lest everyone’s communications suffer.

• Reliability: The directory service becomes a single central point of failure. If it becomes
unavailable, then no one can communicate with anyone not known to them. Moreover,
the service becomes a single point of vulnerability to denial-of-service attacks: if an
attacker can mount a successful DoS attack on the directory service, the effects will be
felt globally.

• Online: Users will not be able to use this service while they are disconnected. If Alice
is composing an email offline (say while traveling), and wants to encrypt it to Bob, her
email client will not be able to look up Bob’s public key and encrypt the email until
she has connectivity again. As another example, suppose Bob and Alice are meeting
in person in the same room, and Alice wants to use her phone to beam a file to Bob
over infrared or Bluetooth. If she doesn’t have general Internet connectivity, she’s out
of luck: she can’t use the directory service to look up Bob’s public key.

• Security: The directory service needs to be available in real time to answer these
queries. That means that the machines running the directory service need to be
Internet-connected at all times, so they will need to be carefully secured against remote

CS 161 Notes 57 of 79

attacks.

Because of these limitations, the trusted directory service concept is not widely used in
practice, except in the context of messengers (such as Signal), where in order to send a
message, Alice already has to be online.

In this case, the best approach is described as “trust but verify” using a key transparency
mechanism. Suppose Alice and Bob discovered each others keys through the central key-
server. If they are ever in person, they can examine their devices to ensure that Alice actually
has the correct key for Bob and vice versa. Although inconvenient, this acts as a check on
a rogue keyserver, as the rogue keyserver would know there is at least a chance of getting
caught.

However, some of these limitations—specifically, the ones relating to scalability, reliability,
and the requirement for online access to the directory service—can be addressed through a
clever idea known as digital certificates.

13.3 Digital Certificates
Digital certificates are a way to represent an alleged association between a person’s name
and their public key, as attested by some certifying party.

Let’s look at an example. As a professor at UC Berkeley, David Wagner is an employee of
the state of California. Suppose that the state maintained a list of each state employee’s
public key, to help Californians communicate with their government securely. The governor,
Jerry Brown, might control a private key that is used to sign statements about the public
key associated with each employee. For instance, Jerry could sign a statement attesting
that “David Wagner’s public key is 0x092...3F”, signed using the private key that Jerry
controls.

In cryptographic protocol notation, the certificate would look like this:

{David Wagner’s public key is 0x092...3F}K−1
Jerry

where here {M}K−1 denotes a digital signature on the message M using the private key K−1.
In this case, K−1Jerry is Jerry Brown’s private key. This certificate is just some digital data:
a sequence of bits. The certificate can be published and shared with anyone who wants to
communicate securely with David.

If Alice wants to communicate securely with David, she can obtain a copy of this certificate.
If Alice knows Jerry’s public key, she can verify the signature on David’s digital certificate.
This gives her high confidence that indeed Jerry consented to the statement about the bit
pattern of David’s public key, because the valid signature required Jerry to decide to agree
to apply his private key to the statement.

If Alice also considers Jerry trustworthy and competent at recording the association between
state employees and their public keys, she can then conclude that David Wagner’s public
key is 0x092...3F, and she can use this public key to securely communicate with David.

CS 161 Notes 58 of 79

Notice that Alice did not need to contact a trusted directory service. She only needed to
receive a copy of the digital certificate, but she could obtain it from anyone—by Googling it,
by obtaining it from an untrusted directory service, by seeing it scrawled on a whiteboard, or
by getting a copy from David himself. It’s perfectly safe for Alice to download a copy of the
certificate over an insecure channel, or to obtain it from an untrustworthy source, as long as
she verifies the signature on the digital certificate and trusts Jerry for these purposes. The
certificate is, in some sense, self-validating. Alice has bootstrapped her trust in the validity
of David’s public key based on her existing trust that she has a correct copy of Jerry’s
public key, plus her belief that Jerry takes the act of signing keys seriously, and won’t sign
a statement regarding David’s public key unless Jerry is sure of the statement’s correctness.

13.4 Public-Key Infrastructure (PKI)
Let’s now put together the pieces. A Certificate Authority (CA) is a party who issues
certificates. If Alice trusts some CA, and that CA issues Bob a digital certificate, she can
use Bob’s certificate to get a copy of Bob’s public key and securely communicate with him.
For instance, in the example of the previous section, Jerry Brown acted as a CA for all
employees of the state of California.

In general, if we can identify a party who everyone in the world trusts to behave honestly
and competently—who will verify everyone’s identity, record their public key accurately, and
issue a public certificate to that person accordingly—that party can play the role of a trusted
CA. The public key of the trusted CA can be hardcoded in applications that need to use
cryptography. Whenever an application needs to look up David Wagner’s public key, it can
ask David for a copy of his digital certificate, verify that it was properly signed by the trusted
CA, extract David’s public key, and then communicate securely with David using his public
key.

Some of the criticisms of the trusted directory service mentioned earlier also apply to this
use of CAs. For instance, the CA must be trusted by everyone: put another way, Alice’s
security can be breached if the CA behaves maliciously, makes a mistake, or acts without
sufficient care. So we need to find a single entity whom everyone in the world can agree
to trust—a tall order. However, digital certificates have better scalability, reliability, and
utility than an online directory service.

For this reason, digital certificates are widely used in practice today, with large companies
(e.g., Verisign) having thriving businesses acting as CAs.

This model is also used to secure the web. A web site that wishes to offer access via SSL
(https:) can buy a digital certificate from a CA, who checks the identity of the web site and
issues a certificate linking the site’s domain name (e.g., www.amazon.com) to its public key.
Every browser in the world ships with a list of trusted CAs. When you type in an https:

URL into your web browser, it connects to the web site, asks for a copy of the site’s digital
certificate, verifies the certificate using the public key of the CA who issued it, checks that the
domain name in the certificate matches the site that you asked to visit, and then establishes
secure communications with that site using the public key in the digital certificate.

CS 161 Notes 59 of 79

Web browsers come configured with a list of many trusted CAs. As a fun exercise, you might
try listing the set of trusted CAs configured in your web browser and seeing how many of the
names you can recognize. If you use Firefox, you can find this list by going to Preferences
/ Advanced / Certificates / View Certificates / Authorities. Firefox currently ships with
about 88 trusted CAs preconfigured in the browser. Take a look and see what you think of
those CAs. Do you know who those CAs are? Would you consider them trustworthy? You’ll
probably find many unfamiliar names. For instance, who is Unizeto? TURKTRUST? AC
Camerfirma? XRamp Security Services? Microsec Ltd? Dhimyotis? Chunghwa Telecom
Co.? Do you trust them?

The browser manufacturers have decided that, whether you like it or not, those CAs are
trusted. You might think that it’s an advantage to have many CAs configured into your
browser, because that gives each user a choice depending upon whom they trust. However,
that’s not how web browsers work today. Your web browser will accept any certificate issued
by any of these 88 CAs. If Dhimyotis issues a certificate for amazon.com, your browser will
accept it. Same goes for all the rest of your CAs. This means that if any one of those 88 CAs
issues a certificate to the wrong person, or behaves maliciously, that could affect the security
of everyone who uses the web. The more CAs your browser trusts, the greater the risk of a
security breach. That CA model is under increasing criticism for these reasons.

13.5 Certificate Chains and Hierarchical PKI
Above we looked at an example where Jerry Brown could sign certificates attesting to the
public keys of every California state employee. However, in practice that may not be realistic.
There are over 200,000 California state employees, and Jerry couldn’t possibly know every
one of them personally. Even if Jerry spent all day signing certificates, he still wouldn’t be
able to keep up—let alone serve as governor.

A more scalable approach is to establish a hierarchy of responsibility. Jerry might issue
certificates to the heads of each of the major state agencies. For instance, Jerry might issue
a certificate for the University of California, delegating to UC President Janet Napolitano
the responsibility and authority to issue certificates to UC employees. Napolitano might sign
certificates for all UC employees. We get:

{The University of California’s public key is KNapolitano}K−1
Jerry

{David Wagner’s public key is Kdaw}K−1
Napolitano

This is a simple example of a certificate chain: a sequence of certificates, each of which
authenticates the public key of the party who has signed the next certificate in the chain.

Of course, it might not be realistic for President Napolitano to personally sign the certificates
of all UC employees. We can imagine more elaborate and scalable scenarios. Jerry might
issue a certificate for UC to Janet Napolitano; Napolitano might issue a certificate for UC
Berkeley to UCB Chancellor Nicholas Dirks; Dirks might issue a certificate for the UCB
EECS department to EECS Chair Randy Katz; and Katz might issue each EECS professor
a certificate that attests to their name, public key, and status as a state employee. This
would lead to a certificate chain of length 4.

CS 161 Notes 60 of 79

In the latter example, Jerry acts as a Certificate Authority (CA) who is the authoritative
source of information about the public key of each state agency; Napolitano serves as a CA
who manages the association between UC campuses and public keys; Dirks serves as a CA
who is authoritative regarding the public key of each UCB department; and so on. Put
another way, Jerry delegates the power to issue certificates for UC employees to Napolitano;
Napolitano further sub-delegates this power, authorizing Dirks to control the association
between UCB employees and their public keys; and so on.

In general, the hierarchy forms a tree. The depth can be arbitrary, and thus certificate chains
may be of any length. The CA hierarchy is often chosen to reflect organizational structures.

13.6 Revocation
What do we do if a CA issues a certificate in error, and then wants to invalidate the cer-
tificate? With the basic approach described above, there is nothing that can be done: a
certificate, once issued, remains valid forever.

This problem has arisen in practice. A number of years ago, Verisign issued bogus certificates
for “Microsoft Corporation” to . . . someone other than Microsoft. It turned out that Verisign
had no way to revoke those bogus certificates. This was a serious security breach, because it
provided the person who received those certificates with the ability to run software with all
the privileges that would be accorded to the real Microsoft. How was this problem finally
resolved? In the end, Microsoft issued a special patch to the Windows operating system
that revoked those specific bogus certificates. The patch contained a hardcoded copy of
the bogus certificates and inserted an extra check into the certificate-checking code: if the
certificate matches one of the bogus certificates, then treat it as invalid. This addressed the
particular issue, but was only feasible because Microsoft was in a special position to push
out software to address the problem. What would we have done if a trusted CA had handed
out a bogus certificate for Amazon.com, or Paypal.com, or BankofAmerica.com, instead of
for Microsoft.com?

This example illustrates the need to consider revocation when designing a PKI system. There
are two standard approaches to revocation:

• Validity periods. Certificates can contain an expiration date, so they’re no longer
considered valid after the expiration date. This doesn’t let you immediately revoke a
certificate the instant you discover that it was issued in error, but it limits the damage
by ensuring that the erroneous certificate will eventually expire.

With this approach, there is a fundamental tradeoff between efficiency and how quickly
one can revoke an erroneous certificate. On the one hand, if the lifetime of each
certificate is very short—say, each certificate is only valid for a single day, and then you
must request a new one—then we have a way to respond quickly to bad certificates:
a bad certificate will circulate for at most one day after we discover it. Since we
won’t re-issue certificates known to be bad, after the lifetime elapses the certificate has
effectively been revoked. However, the problem with short lifetimes is that legitimate
parties must frequently contact their CA to get new certificates; this puts a heavy load

CS 161 Notes 61 of 79

on all the parties, and can create reliability problems if the CA is unreachable for a
day. On the other hand, if we set the lifetime very long, then reliability problems can
be avoided and the system scales well, but we lose the ability to respond promptly to
erroneously issued certificates.

• Revocation lists. Alternatively, the CA could maintain and publish a list of all cer-
tificates it has revoked. For security, the CA could date and digitally sign this list.
Every so often, everyone could download the latest copy of this revocation list, check
its digital signature, and cache it locally. Then, when checking the validity of a digital
certificate, we also check that it is not on our local copy of the revocation list.

The advantage of this approach is that it offers the ability to respond promptly to
bad certificates. There is a tradeoff between efficiency and prompt response: the
more frequently we ask everyone to download the list, the greater the load on the
bandwidth and on the CA’s revocation servers, but the more quickly we can revoke
bad certificates. If revocation is rare, this list might be relatively short, so revocation
lists have the potential to be more efficient than constantly re-issuing certificates with
a short validity period.

However, revocation lists also pose some special challenges of their own. What should
clients do if they are unable to download a recent copy of the revocation list? If clients
continue to use an old copy of the revocation list, then this creates an opportunity
for an attacker who receives a bogus certificate to DoS the CA’s revocation servers in
order to prevent revocation of the bogus certificate. If clients err on the safe side by
rejecting all certificates if they cannot download a recent copy of the revocation list,
this creates an even worse problem: an attacker who successfully mounts a sustained
DoS attack on the CA’s revocation servers may be able to successfully deny service to
all users of the network.

Today, systems that use revocation lists typically ignore these denial-of-service risks
and hope for the best.

13.7 Web of Trust
Another approach is the so-called web of trust, which was pioneered by PGP, a software
package for email encryption. The idea is to democratize the process of public key verification
so that it does not rely upon any single central trusted authority. In this approach, each
person can issue certificates for their friends, colleagues, and others whom they know.

Suppose Alice wants to contact Doug, but she doesn’t know Doug. In the simplest case, if
she can find someone she knows and trusts who has issued Doug a certificate, then she has
a certificate for Doug, and everything is easy.

If that doesn’t work, things get more interesting. Suppose Alice knows and trusts Bob, who
has issued a certificate to Carol, who has in turn issued a certificate to Doug. In this case,
PGP will use this certificate chain to identify Doug’s public key.

In the latter scenario, is this a reasonable way for Alice to securely obtain a copy of Doug’s

CS 161 Notes 62 of 79

public key? It’s hard to say. For example, Bob might have carefully checked Carol’s identity
before issuing her a certificate, but that doesn’t necessarily indicate how careful or honest
Carol will be in signing other people’s keys. In other words, Bob’s signature on the certificate
for Carol might attest to Carol’s identity, but not necessarily her honesty, integrity, or
competence. If Carol is sloppy or malicious, she might sign a certificate that purports to
identify Doug’s public key, but actually contains some imposter’s public key instead of Doug’s
public key. That would be bad.

This example illustrates two challenges:

• Trust isn’t transitive. Just because Alice trusts Bob, and Bob trusts Carol, it doesn’t
necessarily follow that Alice trusts Carol. (More precisely: Alice might consider Bob
trustworthy, and Bob might consider Carol trustworthy, but Alice might not consider
Carol trustworthy.)

• Trust isn’t absolute. We often trust a person for a specific purpose, without necessarily
placing absolute trust in them. To quote one security expert: “I trust my bank with
my money but not with my children; I trust my relatives with my children but not
with my money.” Similarly, Alice might trust that Bob will not deliberately act with
malicious intent, but it’s another question whether Alice trusts Bob to very diligently
check the identity of everyone whose certificate he signs; and it’s yet another question
entirely whether Alice trusts Bob to have good judgement about whether third parties
are trustworthy.

The web-of-trust model doesn’t capture these two facets of human behavior very well.

The PGP software takes the web of trust a bit further. PGP certificate servers store these
certificates and make it easier to find an intermediary who can help you in this way. PGP
then tries to find multiple paths from the sender to the recipient. The idea is that the more
paths we find, and the shorter they are, the greater the trust we can have in the resulting
public key. It’s not clear, however, whether there is any principled basis for this theory, or
whether this really addresses the issues raised above.

One criticism of the web-of-trust approach is that, empirically, many users find it hard to
understand. Most users are not experts in cryptography, and it remains to be seen whether
the web of trust can be made to work well for non-experts. To date, the track record has not
been one of strong success. Even in the security community, it is only partially used—not
due to lack of understanding, but due to usability hurdles, including lack of integration into
mainstream tools such as mail readers.

13.8 Leap-of-Faith Authentication
Another approach to managing keys is exemplified by SSH. The first time that you use SSH
to connect to a server you’ve never connected to before, your SSH client asks the server for
its public key, the server responds in the clear, and the client takes a “leap of faith” and

CS 161 Notes 63 of 79

trustingly accepts whatever public key it receives.15 The client remembers the public key
it received from this server. When the client later connects to the same server, it uses the
same public key that it obtained during the first interaction.

This is known as leap-of-faith authentication16 because the client just takes it on faith that
there is no man-in-the-middle attacker the first time it connects to the server. It has also
sometimes been called key continuity management, because the approach is to ensure that
the public key associated with any particular server remains unchanged over a long time
period.

What do you think of this approach?

• A rigorous cryptographer might say: this is totally insecure, because an attacker could
just mount a MITM attack on the first interaction between the client and server.

• A pragmatist might say: that’s true, but it still prevents many kinds of attacks. It
prevents passive eavesdropping. Also, it defends against any attacker who wasn’t
present during the first interaction, and that’s a significant gain.

• A user might say: this is easy to use. Users don’t need to understand anything about
public keys, key management, digital certificates or other cryptographic concepts. In-
stead, the SSH client takes care of security for them, without their involvement. The
security is invisible and automatic.

Key continuity management exemplifies several design principles for “usable security”. One
principle is that “there should be only one mode of operation, and it should be secure.” In
other words, users should not have to configure their software specially to be secure. Also,
users should not have to take an explicit step to enable security protections; the security
should be ever-present and enabled automatically, in all cases. Arguably, users should not
even have the power to disable the security protections, because that opens up the risk
of social engineering attacks, where the attacker tries to persuade the user to turn off the
cryptography.

Another design principle: “Users shouldn’t have to understand cryptography to use the
system securely.” While it’s reasonable to ask the designers of the system to understand
cryptographic concepts, it is not reasonable to expect users to know anything about cryp-
tography.

15The client generally asks the user to confirm the trust decision, but users almost always ok the leap-of-
faith.

16Another term is TOFU = Trust On First Use.

CS 161 Notes 64 of 79

14 Passwords
Passwords are widely used for authentication, especially on the web. What practices should
be used to make passwords as secure as possible?

14.1 Risks and weaknesses of passwords
Passwords have some well-known usability shortcomings. Security experts recommend that
people pick long, strong passwords, but long random passwords are harder to remember.
In practice, users are more likely to choose memorable passwords, which may be easier to
guess. Also, rather than using a different, independently chosen password for each site,
users often reuse passwords across multiple sites, for ease of memorization. This has security
consequences as well.

From a security perspective, we can identify a number of security risks associated with
password authentication:

• Online guessing attacks. An attacker could repeatedly try logging in with many dif-
ferent guesses at the user’s password. If the user’s password is easy to guess, such an
attack might succeed.

• Social engineering and phishing. An attacker might be able to fool the user into reveal-
ing his/her password, e.g., on a phishing site. We’ve examined this topic previously,
so we won’t consider it further in these notes.

• Eavesdropping. Passwords are often sent in cleartext from the user to the website. If
the attacker can eavesdrop (e.g., if the user is connecting to the Internet over an open
Wifi network), and if the web connection is not encrypted, the attacker can learn the
user’s password.

• Client-side malware. If the user has a keylogger or other client-side malware on his/her
machine, the keylogger/malware can capture the user’s password and exfiltrate it to
the attacker.

• Server compromise. If the server is compromised, an attacker may be able to learn the
passwords of people who have accounts on that site. This may help the attacker break
into their accounts on other sites.

We’ll look at defenses and mitigations for each of these risks, below.

14.2 Mitigations for eavesdropping
There is a straightforward defense against eavesdropping: we can use SSL (also known as
TLS). In other words, instead of connecting to the web site via http, the connection can
be made over https. This will ensure that the username and password are sent over an
encrypted channel, so an eavesdropper cannot learn the user’s password.

Today, many sites do use SSL, but many do not.

CS 161 Notes 65 of 79

Another possible defense would be to use more advanced cryptographic protocols. For in-
stance, one could imagine a challenge-response protocol where the server sends your browser
a random challenge r; then the browser takes the user’s password w, computes H(w, r) where
H is a cryptographic hash (e.g., SHA256), and sends the result to the server. In this scheme,
the user’s password never leaves the browser and is never sent over the network, which de-
fends against eavesdroppers. Such a scheme could be implemented today with Javascript
on the login page, but it has little or no advantage over SSL (and it has some shortcomings
compared to using SSL), so the standard defense is to simply use SSL.

14.3 Mitigations for client-side malware
It is very difficult to protect against client-side malware.

To defend against keyloggers, some people have proposed using randomized virtual key-
boards: a keyboard is displayed on the screen, with the order of letters and numbers ran-
domly permuted, and the user is asked to click on the characters of their password. This
way, a keylogger (which only logs the key strokes you enter) would not learn your password.
However, it is easy for malware to defeat this scheme: for instance, the malware could simply
record the location of each mouse click and take a screen shot each time you click the mouse.

In practice, if you type your password into your computer and your computer has malware
on it, then the attacker learns your password. It is hard to defend against this; passwords are
fundamentally insecure in this threat model. The main defense is two-factor authentication,
where we combine the password with some other form of authentication (e.g., a SMS sent
to your phone).

14.4 Online guessing attacks
How easy are online guessing attacks? Researchers have studied the statistics of passwords as
used in the field, and the results suggest that online guessing attacks are a realistic threat.
According to one source, the five most commonly used passwords are 123456, password,
12345678, qwerty, abc123. Of course, a smart attacker will start by guessing the most
likely possibilities for the password first before moving on to less likely possibilities. A
careful measurement study found that with a dictionary of the 10 most common passwords,
you can expect to find about 1% of users’ passwords. In other words, about 1% of users
choose a password from among the top 10 most commonly used passwords. It also found
that, with a dictionary of the 220 most commonly used passwords, you can expect to guess
about 50% of users’ passwords: about half of all users will have a password that is in that
dictionary.

One implication is that, if there are no limits on how many guesses an attacker is allowed
to make, an attacker can have a good chance of guessing a user’s password correctly. We
can distinguish targeted from untargeted attacks. A targeted attack is where the attacker
has a particular target user in mind and wants to learn their password; an untargeted attack
is where the attacker just wants to guess some user’s password, but doesn’t care which user
gets hacked. An untargeted attack, for instance, might be relevant if the attacker wants to

CS 161 Notes 66 of 79

take over some existing Gmail account and send lots of spam from it.

The statistics above let us estimate the work an attacker would have to do in each of these
attack settings. For an untargeted attack, the attacker might try 10 guesses at the password
against each of a large list of accounts. The attacker can expect to have to try about
100 accounts, and thus make a total of about 1000 login attempts, to guess one user’s
password correctly. Since the process of guessing a password and seeing if it is correct can
be automated, resistance against untargeted attacks is very low, given how users tend to
choose their passwords in practice.

For a targeted attack, the attacker’s workload has more variance. If the attacker is extremely
lucky, he might succeed within the first 10 guesses (happens 1% of the time). If the attacker
is mildly lucky, he might succeed after about one million guesses (happens half of the time).
If the attacker is unlucky, it might take a lot more than one million guesses. If each attempt
takes 1 second (to send the request to the server and wait for the response), making 220

guesses will take about 11 days, and the attack is very noticeable (easily detectable by the
server). So, targeted attacks are possible, but the attacker is not guaranteed a success, and
it might take quite a few attempts.

14.5 Mitigations for online guessing attacks
Let’s explore some possible mitigations for online guessing:

• Rate-limiting. We could impose a limit on the number of consecutive incorrect guesses
that can be made; if that limit is exceeded, the account is locked and the user must do
something extra to log in (e.g., call up customer service). Or, we can impose a limit
on the maximum guessing rate; if the number of incorrect guesses exceeds, say, 5 per
hour, then we temporarily lock the account or impose a delay before the next attempt
can be made.

Rate-limiting is a plausible defense against targeted attacks. It does have one potential
disadvantage: it introduces the opportunity for denial-of-service attacks. If Mallory
wants to cause Bob some grief, Mallory can make enough incorrect login attempts to
cause Bob’s account to be locked. In many settings, though, this denial-of-service risk
is acceptable. For instance, if we can limit each account to 5 incorrect guesses per hour,
making 220 guesses would take at least 24 years—so at least half of our user population
will become essentially immune to targeted attacks.

Unfortunately, rate-limiting is not an effective defense against untargeted attacks. An
attacker who can make 5 guesses against each of 200 accounts (or 1 guess against each
of 1000 accounts) can expect to break into at least one of them. Rate-limiting probably
won’t prevent the attacker from making 5 guesses (let alone 1 guess).

Even with all of these caveats, rate-limiting is probably a good idea. Unfortunately,
one research study found that only about 20% of major web sites currently use rate-
limiting.

• CAPTCHAs. Another approach could be to try to make it harder to perform automated

CS 161 Notes 67 of 79

online guessing attacks. For instance, if a login attempt for some user fails, the system
could require that the next time you try to log into that same account, you have to
solve a CAPTCHA. Thus, making n guesses at the password for a particular user
would require solving n− 1 CAPTCHAs. CAPTCHAs are designed to be solvable for
humans but (we hope) not for computers, so we might hope that this would eliminate
automated/scripted attacks.

Unfortunately, this defense is not as strong as we might hope. There are black-
market services which will solve CAPTCHAs for you. They even provide easy-to-
use APIs and libraries so you can automate the process of getting the solution to the
CAPTCHA. These services employ human workers in countries with low wages to solve
the CAPTCHAs. The market rate is about $1–2 per thousand CAPTCHAs solved, or
about 0.1–0.2 cents per CAPTCHA solved. This does increase the cost of a targeted
attack, but not beyond the realm of possibility.

CAPTCHAs do not stop an untargeted attack. For instance, an attacker who makes
one guess at each of 1000 accounts won’t have to solve any CAPTCHAs. Or, if for some
reason the attacker wants to make 10 guesses at each of 100 accounts, the attacker will
only have to solve 900 CAPTCHAs, which will cost the attacker maybe a dollar or
two: not very much.

• Password requirements or nudges. A site could also impose password requirements
(e.g., your password must be 10 characters long and contain at least 1 number and 1
punctuation symbol). However, these requirements offer poor usability, are frustrating
for users, and may just tempt some users to evade or circumvent the restriction, thus
not helping security. Therefore, I would be reluctant to recommend stringent password
requirements, except possibly in special cases.

Another approach is to apply a gentle “nudge” rather than impose a hard requirement.
For instance, studies have found that merely showing a password meter during account
creation can help encourage people to choose longer and stronger passwords.

14.6 Mitigations for server compromise
The natural way to implement password authentication is for the website to store the pass-
words of all of its passwords in the clear, in its database. Unfortunately, this practice is bad
for security. If the site gets hacked and the attacker downloads a copy of the database, then
now all of the passwords are breached; recovery may be painful. Even worse, because users
often reuse their passwords on multiple sites, such a security breach may now make it easier
for the attacker to break into the user’s accounts on other websites.

For these reasons, security experts recommend that sites avoid storing passwords in the clear.
Unfortunately, sites don’t always follow this advice. For example, in 2009, the Rockyou social
network got hacked, and the hackers stole the passwords of all 32 million of their users and
posted them on the Internet; not good. One study estimates that about 30–40% of sites still
store passwords in the clear.

CS 161 Notes 68 of 79

14.7 Password hashing
If storing passwords in the clear is not a good idea, what can we do that is better? One
simple approach is to hash each password with a cryptographic hash function (say, SHA256),
and store the hash value (not the password) in the database.

In more detail, when Alice creates her account and enters her password w, the system can
hash w to get H(w) and store H(w) in the user database. When Alice returns and attempts
to log in, she provides a password, say w′; the system can check whether this is correct by
computing the hash H(w′) of w′ and checking whether H(w′) matches what is in the user
database.

Notice that the properties of cryptographic hash functions are very convenient for this ap-
plication. Because cryptographic hash functions are one-way, it should be hard to recover
the password w from the hash H(w); so if there is a security breach and the attacker steals
a copy of the database, no cleartext passwords are revealed, and it should be hard for the
attacker to invert the hash and find the user’s hashes. That’s the idea, anyway.

Unfortunately, this simple idea has some shortcomings:

• Offline password guessing. Suppose that Mallory breaks into the website and steals a
copy of the password database, so she now has the SHA256 hash of Bob’s password.
This enables her to test guesses at Bob’s password very quickly, on her own computer,
without needing any further interaction with the website. In particular, given a guess g
at the password, she can simply hash g to get H(g) and then test whether H(g) matches
the password hash in the database. By using lists of common passwords, English words,
passwords revealed in security breaches of sites who didn’t use password hashing, and
other techniques, one can generate many guesses. This is known as an offline guessing
attack : offline, because Mallory doesn’t need to interact with the website to test a
guess at the password, but can check her guess entirely locally.

Unfortunately for us, a cryptographic hash function like SHA256 is very fast. This lets
Mallory test many guesses rapidly. For instance, on modern hardware, it is possible to
test something in the vicinity of 1 billion passwords per second (i.e., to compute about
1 billion SHA256 hashes per second). So, imagine that Mallory breaks into a site with
100 million users. Then, by testing 220 guesses at each user’s password, she can learn
about half of those users’ passwords. How long will this take? Well, Mallory will need
to make 100 million ×220 guesses, or a total of about 100 trillion guesses. At 1 billion
guesses per second, that’s about a day of computation. Ouch. In short, the hashing of
the passwords helps some, but it didn’t help nearly as much as we might have hoped.

• Amortized guessing attacks. Even worse, the attack above can be sped up dramatically
by a more clever algorithm that avoids unnecessarily repeating work. Notice that we’re
going to try guessing the same 220 plausible passwords against each of the users. And,
notice that the password hash H(w) doesn’t depend upon the user: if Alice and Bob
both have the same password, they’ll end up with the same password hash.

So, consider the following optimized algorithm for offline password guessing. We com-

CS 161 Notes 69 of 79

pute a list of 220 pairs (H(g), g), one for each of the 220 most common passwords g, and
sort this list by the hash value. Now, for each user in the user database, we check to see
whether their password hash H(w) is in the sorted list. If it is in the list, then we’ve
immediately learned that user’s password. Checking whether their password hash is in
the sorted list can be done using binary search, so it can be done extremely efficiently
(with about lg 220 = 20 random accesses into the sorted list). The attack requires com-
puting 220 hashes (which takes about one millisecond), sorting the list (which takes
fractions of a second), and doing 100 million binary searches (which can probably be
done in seconds or minutes, in total). This is much faster than the previous offline
guessing attack, because we avoid repeated work: we only need to compute the hash
of each candidate password once.

14.8 Password hashing, done right
With these shortcomings in mind, we can now identify a better way to store passwords on
the server.

First, we can eliminate the amortized guessing attack by incorporating randomness into the
hashing process. When we create a new account for some user, we pick a random salt s. The
salt is a value whose only purpose is to be different for each user; it doesn’t need to be secret.
The password hash for password w is H(w, s). Notice that the password hash depends on
the salt, so even if Alice and Bob share the same password w, they will likely end up with
different hashes (Alice will have H(w, sA) and Bob H(w, sB), where most likely sA 6= sB).
Also, to enable the server to authenticate each user in the future, the salt for each user is
stored in the user database.

Instead of storing H(w) in the database, we store s,H(w, s) in the database, where s is
a random salt. Notice that s is stored in cleartext, so if the attacker gets a copy of this
database, the attacker will see the value of s. That’s OK; the main point is that each user
will have a different salt, so the attacker can no longer use the amortized guessing attack
above. For instance, if the salt for Alice is sA, the attacker can try guesses g1, g2, . . . , gn
at her password by computing H(g1, sA), . . . , H(gn, sA) and comparing each one against her
password hash H(wA, sA). But now when the attacker wants to guess Bob’s password, he
can’t reuse any of that computation; he’ll need to compute a new, different set of hashes,
i.e., H(g1, sB), . . . , H(gn, sB), where sB is the salt for Bob.

Salting is good, because it increases the attacker’s workload to invert many password hashes.
However, it is not enough. As the back-of-the-envelope calculation above illustrated, an
attacker might still be able to try 220 guesses at the password against each of 100 million
users’ password hashes in about a day. That’s not enough to prevent attacks. For instance,
when LinkedIn had a security breach that exposed the password hashes of all of their users,
it was discovered that they were using SHA256, and consequently one researcher was able
to recover 90% of their users’ passwords in just 6 days. Not good.

So, the second improvement is to use a slow hash. The reason that offline password guessing
is so efficient is because SHA256 is so fast. If we had a cryptographic hash that was very

CS 161 Notes 70 of 79

slow—say, it took 1 millisecond to compute—then offline password guessing would be much
slower; an attacker could only try 1000 guesses at the password per second.

One way to take a fast hash function and make it slower is by iterating it. In other words,
if H is a cryptographic hash function like SHA256, define the function F by

F (x) = H(H(H(· · · (H(x)) · · ·))),

where we have iteratively applied H n times. Now F is a good cryptographic hash function,
and evaluating F will be n times slower than evaluating H. This gives us a tunable parameter
that lets us choose just how slow we want the hash function to be.

Therefore, our final construction is to store s, F (w, s) in the database, where s is a randomly
chosen salt, and F is a slow hash constructed as above. In other words, we store

s,H(H(H(· · · (H(w, s)) · · ·)))

in the database.

How slow should the hash function F be? In other words, how should we choose n? On the
one hand, for security, we’d like n to be as large as possible: the larger it is, the slower offline
password guessing will be. On the other hand, we can’t make it too large, because that will
slow down the legitimate server: each time a user tries to log in, the server needs to evaluate
F on the password that was provided. With these two considerations, we can now choose the
parameter n to provide as much security as possible while keeping the performance overhead
of slow hashing down to something unnoticeable.

For instance, suppose we have a site that expects to see at most 10 logins per second (that
would be a pretty high-traffic site). Then we could choose n so that evaluating F takes
about one millisecond. Now the legitimate server can expect to spend 1% of its CPU power
on performing password hashes—a small performance hit. The benefit is that, if the server
should be compromised, offline password guessing attacks will take the attacker a lot longer.
With the example parameters above, instead of taking 1 day to try 220 candidate passwords
against all 100 million users, it might take the attacker about 3000 machine-years. That’s a
real improvement.

In practice, there are several existing schemes for slow hashing that you can use: Scrypt,
Bcrypt, or PBKDF2. They all use some variant of the “iterated hashing” trick mentioned
above.

14.9 Implications for cryptography
The analysis above has implications for the use of human-memorable passwords or passphrases
for cryptography.

Suppose we’re building a file encryption tool. It is tempting to prompt the user to enter in
a password w, hash it using a cryptographic hash function (e.g., SHA256), use k = H(w)
as a symmetric key, and encrypt the file under k. Unfortunately, this has poor security. An
attacker could try the 220 most common passwords, hash each one, try decrypting under

CS 161 Notes 71 of 79

that key, and see if the decryption looks plausibly like ciphertext. Since SHA256 is fast, this
attack will be very fast, say one millisecond; and based upon the statistics mentioned above,
this attack might succeed half of the time or so.

You can do a little bit better if you use a slow hash to generate the key instead of SHA256.
Unfortunately, this isn’t enough to get strong security. For example, suppose we use a slow
hash tuned to take 1 millisecond to compute the hash function. Then the attacker can
make 1000 guesses per second, and it’ll take only about 15 minutes to try all 220 most likely
passwords; 15 minutes to have a 50% chance of breaking the crypto doesn’t sound so hot.

The unavoidable conclusion is that deriving cryptographic keys from passwords, passphrases,
or human-memorable secrets is usually not such a great idea. Password-based keys tend to
have weak security, so they should be avoided whenever possible. Instead, it is better to use
a truly random cryptographic key, e.g., a truly random 128-bit AES key, and find some way
for the user to store it securely.

14.10 Alternatives to passwords
Finally, it is worth noting that there are many alternatives to passwords, for authenticating
to a server. Some examples include:

• Two-factor authentication.

• One-time PINs (e.g., a single-use code sent via SMS to your phone, or a hardware
device such as RSA SecurID).

• Public-key cryptography (e.g., SSH).

• Secure persistent cookies.

We most likely won’t have time to discuss any of these further in this class, but they are worth
knowing about, for situations where you need more security than passwords can provide.

14.11 Summary
The bottom line is: don’t store passwords in the clear. Instead, sites should store passwords
in hashed form, using a slow cryptographic hash function and a random salt. If the user’s
password is w, one can store

s,H(H(H(· · · (H(w, s)) · · ·)))

in the database, where s is a random salt chosen randomly for that user and H is a standard
cryptographic hash function.

CS 161 Notes 72 of 79

15 Case Studies
TODO: Under construction.

CS 161 Notes 73 of 79

16 Bitcoin
16.1 Problem Statement
Bitcoin is a digital cryptocurrency, which means it should have all the same properties as
physical currency (e.g. the United States dollar). In our simplified model, a functioning
currency should have the following properties:

• Each person has a bank account, in which they can store units of currency they own.

• Alice cannot impersonate Bob and perform actions as Bob.

• Any two people can engage in a transaction. Alice can send Bob n units of currency.
This will cause Alice’s bank account balance to decrease by n units, and Bob’s bank
account to increase by n units.

• If Alice has n units of currency in her account, she cannot spend any more than n
units in any transaction.

In traditional physical currency, these properties are enforced by a trusted, centralized party
such as a bank. Everyone trusts the bank to keep an accurate list of account holders with
their appropriate account balances, and ensure that the identity of each user is correct before
proceeding with a transaction. So, if Alice sends n units to Bob, both Alice and Bob trust
that the bank will correctly decrease Alice’s balance by n and increase Bob’s balance by n.
Everyone also trusts that the bank will not let Alice spend n+1 units of currency if she only
has n units in her account.

The goal of Bitcoin is to replicate these basic properties of a functioning currency system,
but without any centralized party. Instead of relying on a trusted entity, Bitcoin uses cryp-
tography to enforce the basic properties of currency.

16.2 Cryptographic Primitives
Bitcoin uses two cryptographic primitives that you have already seen in this class. Let’s
briefly review their definitions and relevant properties.

A cryptographic hash is a function H that maps arbitrary-length input x to a fixed-length
output H(x). The hash is collision-resistant, which means it is infeasible to find two different
inputs that map to the same output. In math, it is infeasible to find x 6= y such that
H(x) = H(y).

A digital signature is a cryptographic scheme that guarantees authenticity on a message.
Alice generates a public verification key PK and a secret signing key SK. She broadcasts
the public key to the world and keeps the secret key to herself. When Alice writes a message,
she uses the secret key to generate a signature on her message and attaches the signature to
the message. Anyone else can now use the public key to verify that the signature is valid,
proving that the message was written by Alice and nobody tampered with it.

With these two cryptographic primitives in mind, we can now start designing Bitcoin.

CS 161 Notes 74 of 79

16.3 Identities
Since there is no centralized party to keep track of everyone’s accounts, we will need to assign
a unique identity to everyone. We also need to prevent malicious users from pretending to
be other users.

Every user of Bitcoin generates a public key and private key. Their identity is the public key.
For example, Bob generates PKB and SKB and publishes PKB to the world, so now his
identity in Bitcoin is PKB. When Bob is interacting with Bitcoin, he can prove that he is the
user corresponding to PKB by creating a message and signing it with SKB. Then anybody
can use PKB to verify his signature and confirm that he is indeed the PKB user. Because
digital signatures are unforgeable, an attacker who doesn’t know Bob’s secret signing key
will be unable to impersonate Bob, because the attacker cannot generate a signature that
validates with PKB.

16.4 Transactions
Without a centralized party to validate transactions, we will need a way to cryptographically
verify that Alice actually wants to send n units of currency to Bob. Fortunately, this problem
is essentially solved with our identity scheme above. If Alice wants to send n units of currency
to Bob, she can create a message “PKA sends n units of currency to PKB” and sign it with
her secret key. Note how she uses her public key PKA as her identity and Bob’s public
key PKB as his identity. Now anybody can verify the signature with Alice’s public key to
confirm that the user PKA did intend to make this transaction. Bitcoin doesn’t validate the
recipient–if someone wanted to refuse a transaction, they could create another transaction
to send the money back.

16.5 Balances
In our transaction scheme so far, nothing is stopping Alice from creating and signing a
message “PKA sends 100n units of currency to PKB,” even though she may only have n
units of currency to spend. We need some way to keep track of each user’s balances.

For now, assume that there is a trusted ledger. A ledger is a written record that everybody
can view. It is append-only and immutable, which means you can only add new entries to
the ledger, and you cannot change existing entries in the ledger. You can think of the ledger
like a guest book: when you visit, you can add your own entry, and you can view existing
entries, but you cannot (or should not) change other people’s old entries. Later we will see
how to build a decentralized ledger using cryptography.

Bitcoin does not explicitly record the balance of every user. Instead, every completed trans-
action (along with its signature) is recorded in the public ledger. Since everyone can view
the ledger, anybody can identify an invalid transaction, such as Alice trying to spend more
than she has. For example, suppose Bob starts with $10 and everyone else starts with $0.
(We will discuss where Bob got the $10 later.) Consider the following ledger:

• PKB (Bob) sends PKA (Alice) $5. Message signed with SKB.

CS 161 Notes 75 of 79

• PKB (Bob) sends PKM (Mallory) $2. Message signed with SKB.

• PKM (Mallory) sends PKA (Alice) $1. Message signed with SKM .

• PKA (Alice) sends PKE (Eve) $9. Message signed with SKA.

Can you spot the invalid transaction? Although we don’t have the balances of each user, the
transaction ledger gives us enough information to deduce every user’s balance at any given
time. In this example, after the first three transactions, Bob has $3, Mallory has $1, and
Alice has $6. In the fourth transaction, Alice is trying to spend $9 when she only has $6, so
we know it must be an invalid transaction. Because the ledger is trusted, it will reject this
invalid transaction.

Thus, the idea is to have each block have a list of the transactions that show where the
money being used in this transaction came from, which also means that blocks have to be
sorted in order of creation. Now, our ledger looks as follows (again assuming that Bob starts
with 10B and everyone else starts with 0B:

- TX1 = PKB (Bob) sends PKA (Alice) 5B, and the money came from the initial budget.
TX1 signed with SKB - TX2 = PKA (Alice) sends PKE (Eve) 5B, and the money came
from TX1. TX2 signed with SKA

So, to check a transaction, we follow four steps:

1. Check that the signature on the transaction is verified using the PK of the sender

2. Check that the sender in this transaction was the receiver in some previous transaction

3. Check that the sender in this transaction has not spent the money in some previous
transaction

4. Check that the sender has the appropriate amount of money

If we were checking TX2, we first check that TX2 was actually signed by Alice. Then, we
check that Alice received some money in the past by checking the previous transactions. In
TX2, we see that Alice received the money from TX1, and checking TX1 verifies that Alice
was the receiver. Next, we check that Alice has not spent the money earlier, so we scan the
history of the blockchain and we don’t see anywhere where the money from TX1 was used.
Finally, we check that Alice has 5 B by again checking TX1 and seeing that she did receive
5 B from Bob. At this point, we have verified that TX2 is a valid transaction, and we thus
append it to the blockchain ledger.

At this point, we have created a functioning currency:

• Each person has a unique account, uniquely identified by public key.

• Users cannot impersonate other users, because each user can be validated by a secret
signing key that only that user knows.

• Users can engage in a transaction by having the sender add their transaction to the
ledger, with a signature on the transaction.

CS 161 Notes 76 of 79

• Users cannot spend more than their current balance, because the trusted ledger is
append-only, and everyone is able to calculate balances from the ledger.

The only remaining design element is creating a decentralized append-only ledger, which we
will discuss next.

16.6 Hash chains
Recall that we need a public ledger that is append-only and immutable: everyone can add
entries to the ledger, but nobody can modify or delete existing entries.

To build this ledger, we will start with a hash chain. Suppose we have five messages,
m1,m2, . . . ,m5 that we want to append to the ledger. The resulting hash chain would look
like this:

Block 1 Block 2 Block 3 Block 4 Block 5
m1 m2, H(Block 1) m3, H(Block 2) m4, H(Block 3) m5, H(Block 4)

Note that each block contains the hash of the previous block, which in turn contains the
hash of the previous block, etc. In other words, each time we append a new message in a
new block, the hash of the previous block contains a digest of all the entries in the hash
chain so far.

Another way to see this is to write out the hashes. For example:

Block 4 = m4, H(Block 3)

= m4, H(m3, H(Block 2))

= m4, H(m3, H(m2, H(Block 1)))

= m4, H(m3, H(m2, H(m1)))

Note that Block 4 contains a digest of all the messages so far, namely m1,m2,m3,m4.

16.7 Properties of Hash Chains
Assume that Alice is given the H(Block i) from a trusted source, but she downloads blocks
1 through i from an untrusted source. Only using the H(Block i), Alice can verify that the
blocks she downloaded from the untrusted source are not compromised by recomputing the
hashes of each block, checking that they match the hash in the next block, and so on, until
the last block, which she checks against the hash she received from the trusted source. Let’s
walk through an example:

Say Alice received the H(Block 4) from somewhere she trusts and then fetches the entire
blockchain from a compromised server (so she downloads blocks 1 through 4). Can an
attacker give Alice an incorrect chain, say with block 2 being incorrect, without her detecting
it? No! Since we use cryptographic hashes, which are collision resistant, two different blocks
cannot hash to the same value. Say that block 2 is incorrect and Alice instead received
block 2′, then H(Block 2′) 6= H(Block 2). Since block 3 includes the hash of block 2′,

CS 161 Notes 77 of 79

block 3 will also be incorrect, so the third block that Alice received is block 3′ 6= block 3. So,
H(Block 3′) 6= H(Block 3). Then, since block 4 includes the hash of block 3′, block 4 will also
be incorrect, so the fourth block that Alice received is block 4′ 6= block 4. So, H(Block 4′) 6=
H(Block 4). Since Alice received H(block 4) from a trusted source, and it does not match up
with H(Block4′), Alice is able to detect misbehavior. On the other hand, if the H(Block 4′)
did match H(Block 4), then the blockchain that Alice downloaded is correct, and we have
no misbehavior.

So, perhaps the most important property in a hash chain is that if you get the hash of the
latest block from a trusted source, then you can verify that all of the previous history is
correct.

16.8 Consensus in Bitcoin
In Bitcoin, every participant in the network stores the entire blockchain (and thus all of its
history) since we don’t utilize a centralized server. When someone wants to create a new
transaction, they broadcast that transaction to everyone, and each user on the network has
to check the transaction. If the transaction is correct, they will append it to their local
blockchain.

The issue is that some users might be malicious, meaning that they might not append
certain transactions or might not check certain transactions correctly or might replay certain
transactions or might allow invalid transactions. Bitcoin, however, assumes that the majority
of users are honest.

Perhaps one of the biggest issues is forks, which are essentially different versions of the
blockchain that exist at the same time. For example, say that Mallory bought a house from
Bob for 500 B, and this transaction is appended to the ledger. Mallory can then try “go
back in time” and start the blockchain from just before this transaction was added to it, and
can start appending new transaction entries from there. If Mallory can get other users to
accept this new forked chain, she can get her 500 B back!

This means that we need a way for all users to agree on the content of the blockchain:
consensus via proof of work.

16.9 Consensus via Proof of Work
In Bitcoin, while every user locally stores the entire blockchain, not every user can add a
block. This special privilege is reserved for certain users, known as miners, who can only
add a block if they have a valid proof of work. A miner validates transactions before solving
a proof of work, which, if completed before any other miner, allows the miner to append
the block to the blockchain. The proof of work is a computational puzzle that takes the
hash of the current block concatenated with a random number. This random number can be
incremented so that the hash changes, until the proof of work is solved. The proof of work
is considered solved when the resulting hash starts with N zero bits, where the value of N
(e.g. 33) is determined by the Bitcoin algorithm.

CS 161 Notes 78 of 79

Miners then broadcast blocks with their proof of work. All honest miners listen for such
blocks, check the blocks for correctness, and accept the longest correct chain. If a miner
appends a block with some incorrect transaction, the block is ignored. The key idea for
consensus is that everyone will always prefer the longest correct chain. Thus, if multiple
miners append blocks at the same time, consensus is gained by the longest correct chain,
and the rest of the “versions” are discarded. When two different miners at the same time
solve a proof of work and append two different blocks, thus forking the network, the next
miner that appends onto one of these chains invalidates the other chain.

Say for example that an honest miner M1 stores the current local blockchain b1→b2→b3,
and hears about transaction T . M1 checks T , then tries to mine (solve for the proof of
work) for a new block b4 to now include transaction T . However, if miner M2 mines b4 first,
M2 will broadcast b1→b2→b3→b4. M1 checks b4, accepts it, gives up mining block 4, then
starts to mine for block 5. M1 now has the blockchain b1→b2→b3→b4 stored locally and has
started to mine b5. However, if M1 hears miner 3 broadcasts b1→b2→b3→b′4→b′5, M1 will dis-
card the shorter blockchain (b1→b2→b3→b4) in favor of the longer one (b1→b2→b3→b′4→b′5).
By always accepting the longest blockchain, all the miners are ensured to have the same
blockchain view.

Remember that Bitcoin assumes that more than half of the users are honest, meaning that
more than half of the computing power is in the hands of honest miners, thus ensuring that
honest miners will always have an advantage to mine the longest chain. Going back to the
example about forks that prompted this discussion, if proof of consensus is implemented,
Mallory cannot fork the blockchain since she does not have ¿50% of the computing power in
the world. Since the longest chain is always taken as the accepted, Mallory’s forked chain
will be shorter unless she can mine new entries faster than the aggregate mining power of
everyone else in the world.

Go forth and mine!

CS 161 Notes 79 of 79

	Introduction to Cryptography
	Disclaimer: Don't try this at home!
	Brief History of Cryptography
	Definitions
	Definitions: Alice, Bob, Eve, and Mallory
	Definitions: Keys
	Definitions: Confidentiality, Integrity, Authenticity
	Overview of schemes
	Definitions: Kerckhoff's Principle
	Definitions: Threat models

	Symmetric-Key Encryption
	IND-CPA Security
	XOR review
	One Time Pad
	Block Ciphers
	Block Cipher Security
	Block Cipher Modes of Operation
	Parallelization
	Padding
	Reusing IVs is insecure

	Cryptographic Hashes
	Overview
	Properties of Hash Functions
	Hash Algorithms
	Lowest-hash scheme

	Message Authentication Codes (MACs)
	Integrity and Authenticity
	MAC: Definition
	MAC: Security properties
	AES-EMAC
	HMAC
	MACs are not confidential
	Authenticated Encryption
	AEAD Encryption Modes

	Pseudorandom Number Generators
	Randomness and entropy
	Pseudorandom Number Generators (pRNGs)
	Rollback resistance
	HMAC-DRBG
	Stream ciphers

	Diffie-Hellman key exchange
	Diffie-Hellman intuition
	Discrete logarithm problem
	Diffie-Hellman protocol
	Elliptic-curve Diffie-Hellman
	Difficulty in Bits
	Attacks on Diffie-Hellman

	Public-Key (Asymmetric) Encryption
	Overview
	Trapdoor One-way Functions
	RSA Encryption
	El Gamal encryption
	Public Key Distribution
	Session Keys

	Digital Signatures
	Digital signature properties
	RSA Signatures: High-level Outline
	Number Theory Background
	RSA Signatures
	Definition of Security for Digital Signatures

	Certificates
	Man-in-the-middle Attacks
	Trusted Directory Service
	Digital Certificates
	Public-Key Infrastructure (PKI)
	Certificate Chains and Hierarchical PKI
	Revocation
	Web of Trust
	Leap-of-Faith Authentication

	Passwords
	Risks and weaknesses of passwords
	Mitigations for eavesdropping
	Mitigations for client-side malware
	Online guessing attacks
	Mitigations for online guessing attacks
	Mitigations for server compromise
	Password hashing
	Password hashing, done right
	Implications for cryptography
	Alternatives to passwords
	Summary

	Case Studies
	Bitcoin
	Problem Statement
	Cryptographic Primitives
	Identities
	Transactions
	Balances
	Hash chains
	Properties of Hash Chains
	Consensus in Bitcoin
	Consensus via Proof of Work

